THE DIRICHLET PROBLEM FOR NONLOCAL ELLIPTIC OPERATORS WITH C0,α EXTERIOR DATA

被引:7
作者
Audrito, Alessandro [1 ,2 ]
Ros-Oton, Xavier [2 ,3 ,4 ]
机构
[1] Politecn Torino, Inst Math DISMA, Corso Duca degli Abruzzi 24, I-10129 Turin, Italy
[2] Univ Zurich, Dept Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
[4] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
Nonlocal equations; boundary regularity; REGULARITY THEORY; EQUATIONS;
D O I
10.1090/proc/15121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we study the boundary regularity of solutions to non-local Dirichlet problems of the form Lu = 0 in Omega, u = g in R-N\Omega, in non-smooth domains Q. When g is smooth enough, then it is easy to transform this problem into an homogeneous Dirichlet problem with a bounded right-hand side for which the boundary regularity is well understood. Here, we study the case in which g is an element of C-0,C-alpha, and establish the optimal Holder regularity of u up to the boundary. Our results extend previous results of Grubb for C-infinity domains Omega.
引用
收藏
页码:4455 / 4470
页数:16
相关论文
共 19 条
[1]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[2]  
Blumenthal R. M., 1961, Transactions of the American Mathematical Society, V99, P540, DOI DOI 10.2307/1993561
[3]  
Bogdan K, 1997, STUD MATH, V123, P43
[4]   Barriers, exit time and survival probability for unimodal Levy processes [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Micha .
PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (1-2) :155-198
[5]  
Bogdan K, 2015, T AM MATH SOC, V367, P477
[6]   The Evans-Krylov theorem for nonlocal fully nonlinear equations [J].
Caffarell, Luis ;
Silvestre, Luis .
ANNALS OF MATHEMATICS, 2011, 174 (02) :1163-1187
[7]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638
[8]  
Conference Board of the Mathematical Sciences, 2012, CBMS Regional Conference Series in Mathematics
[9]   On fractional elliptic equations in Lipschitz sets and epigraphs: regularity, monotonicity and rigidity results [J].
Dipierro, Serena ;
Soave, Nicola ;
Valdinoci, Enrico .
MATHEMATISCHE ANNALEN, 2017, 369 (3-4) :1283-1326
[10]   The Dirichlet problem for nonlocal operators [J].
Felsinger, Matthieu ;
Kassmann, Moritz ;
Voigt, Paul .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) :779-809