Fiber-cavity-based optomechanical device

被引:121
作者
Flowers-Jacobs, N. E. [1 ]
Hoch, S. W. [1 ]
Sankey, J. C. [2 ]
Kashkanova, A. [1 ]
Jayich, A. M. [1 ]
Deutsch, C. [3 ]
Reichel, J. [3 ]
Harris, J. G. E. [1 ,4 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[3] Univ Paris 06, CNRS, ENS, Lab Kastler Brossel, F-75005 Paris, France
[4] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
关键词
QUANTUM-NOISE REDUCTION; SYSTEM;
D O I
10.1063/1.4768779
中图分类号
O59 [应用物理学];
学科分类号
摘要
We describe an optomechanical device consisting of a fiber-based optical cavity containing a silicon nitride membrane. In comparison with typical free-space cavities, the fiber-cavity's small mode size (10 mu m waist, 80 mu m length) allows the use of smaller, lighter membranes and increases the cavity-membrane linear coupling to 3 GHz/nm and the quadratic coupling to 20 GHz/nm(2). This device is also intrinsically fiber-coupled and uses glass ferrules for passive alignment. These improvements will greatly simplify the use of optomechanical systems, particularly in cryogenic settings. At room temperature, we expect these devices to be able to detect the shot noise of radiation pressure. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768779]
引用
收藏
页数:4
相关论文
共 20 条
[1]  
Abadie J, 2011, NAT PHYS, V7, P962, DOI [10.1038/nphys2083, 10.1038/NPHYS2083]
[2]   Observability of radiation-pressure shot noise in optomechanical systems [J].
Borkje, K. ;
Nunnenkamp, A. ;
Zwickl, B. M. ;
Yang, C. ;
Harris, J. G. E. ;
Girvin, S. M. .
PHYSICAL REVIEW A, 2010, 82 (01)
[3]   Non-classical light generated by quantum-noise-driven cavity optomechanics [J].
Brooks, Daniel W. C. ;
Botter, Thierry ;
Schreppler, Sydney ;
Purdy, Thomas P. ;
Brahms, Nathan ;
Stamper-Kurn, Dan M. .
NATURE, 2012, 488 (7412) :476-480
[4]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[5]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[6]   QUANTUM-NOISE REDUCTION USING A CAVITY WITH A MOVABLE MIRROR [J].
FABRE, C ;
PINARD, M ;
BOURZEIX, S ;
HEIDMANN, A ;
GIACOBINO, E ;
REYNAUD, S .
PHYSICAL REVIEW A, 1994, 49 (02) :1337-1343
[7]   Fluctuating nanomechanical system in a high finesse optical microcavity [J].
Favero, Ivan ;
Stapfner, Sebastian ;
Hunger, David ;
Paulitschke, Philipp ;
Reichel, Jakob ;
Lorenz, Heribert ;
Weig, Eva M. ;
Karrai, Khaled .
OPTICS EXPRESS, 2009, 17 (15) :12813-12820
[8]   Laser micro-fabrication of concave, low-roughness features in silica [J].
Hunger, D. ;
Deutsch, C. ;
Barbour, R. J. ;
Warburton, R. J. ;
Reichel, J. .
AIP ADVANCES, 2012, 2 (01)
[9]   A fiber Fabry-Perot cavity with high finesse [J].
Hunger, D. ;
Steinmetz, T. ;
Colombe, Y. ;
Deutsch, C. ;
Haensch, T. W. ;
Reichel, J. .
NEW JOURNAL OF PHYSICS, 2010, 12
[10]   Dispersive optomechanics: a membrane inside a cavity [J].
Jayich, A. M. ;
Sankey, J. C. ;
Zwickl, B. M. ;
Yang, C. ;
Thompson, J. D. ;
Girvin, S. M. ;
Clerk, A. A. ;
Marquardt, F. ;
Harris, J. G. E. .
NEW JOURNAL OF PHYSICS, 2008, 10