Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

被引:46
作者
Hajjarian, Zeinab [1 ]
Nia, Hadi Tavakoli [2 ]
Ahn, Shawn [3 ]
Grodzinsky, Alan J. [4 ,5 ,6 ]
Jain, Rakesh K. [2 ]
Nadkarni, Seemantini K. [1 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Wellman Ctr Photomed, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Edwin Steele Lab Tumor Biol, Boston, MA USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[5] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] MIT, Dept Elect Engn, Cambridge, MA 02139 USA
关键词
ATHEROSCLEROTIC PLAQUES; PERICELLULAR MATRIX; TISSUE; MICRORHEOLOGY; SCATTERING; DIFFUSION; CARTILAGE; STIFFNESS; CELLS; MODEL;
D O I
10.1038/srep37949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g(2)(t), from which the frequency-dependent viscoelastic modulus, G*(omega), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(omega)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10(-9)), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa - 36 kPa). In addition, |G*(omega)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10(-7)). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications [J].
Ahearne, M ;
Yang, Y ;
El Haj, AJ ;
Then, KY ;
Liu, KK .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2005, 2 (05) :455-463
[2]   Microrheology of human lung epithelial cells measured by atomic force microscopy [J].
Alcaraz, J ;
Buscemi, L ;
Grabulosa, M ;
Trepat, X ;
Fabry, B ;
Farré, R ;
Navajas, D .
BIOPHYSICAL JOURNAL, 2003, 84 (03) :2071-2079
[3]  
[Anonymous], NANOTECHNOLOGY
[4]  
[Anonymous], 2005, MICROSCALE DIAGNOSTI
[5]   Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures [J].
Balgude, AP ;
Yu, X ;
Szymanski, A ;
Bellamkonda, RV .
BIOMATERIALS, 2001, 22 (10) :1077-1084
[6]   Microrheology as a tool for high-throughput screening [J].
Breedveld, V ;
Pine, DJ .
JOURNAL OF MATERIALS SCIENCE, 2003, 38 (22) :4461-4470
[7]   Microrheology of giant-micelle solutions [J].
Cardinaux, F ;
Cipelletti, L ;
Scheffold, F ;
Schurtenberger, P .
EUROPHYSICS LETTERS, 2002, 57 (05) :738-744
[8]  
Choi M, 2013, NAT PHOTONICS, V7, P987, DOI [10.1038/NPHOTON.2013.278, 10.1038/nphoton.2013.278]
[9]   Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy [J].
Christ, Andreas F. ;
Franze, Kristian ;
Gautier, Helene ;
Moshayedi, Pouria ;
Fawcett, James ;
Franklin, Robin J. M. ;
Karadottir, Ragnhildur T. ;
Guck, Jochen .
JOURNAL OF BIOMECHANICS, 2010, 43 (15) :2986-2992
[10]   Spatial Mapping of the Biomechanical Properties of the Pericellular Matrix of Articular Cartilage Measured In Situ via Atomic Force Microscopy [J].
Darling, Eric M. ;
Wilusz, Rebecca E. ;
Bolognesi, Michael P. ;
Zauscher, Stefan ;
Guilak, Farshid .
BIOPHYSICAL JOURNAL, 2010, 98 (12) :2848-2856