Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

被引:18
作者
Haase, I. [1 ]
Oberst, J. [1 ,2 ]
Scholten, F. [2 ]
Waehlisch, M. [2 ]
Glaeser, P. [1 ]
Karachevtseva, I. [3 ]
Robinson, M. S. [4 ]
机构
[1] Tech Univ Berlin, Dept Planetary Geodesy, Inst Geodesy & Geoinformat Sci, D-10623 Berlin, Germany
[2] German Aerosp Ctr, Inst Planetary Res, Berlin, Germany
[3] State Univ Geodesy & Cartog, Moscow, Russia
[4] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
关键词
D O I
10.1029/2011JE003908
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called "traverse stations", were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 [J].
Archinal, B. A. ;
A'Hearn, M. F. ;
Bowell, E. ;
Conrad, A. ;
Consolmagno, G. J. ;
Courtin, R. ;
Fukushima, T. ;
Hestroffer, D. ;
Hilton, J. L. ;
Krasinsky, G. A. ;
Neumann, G. ;
Oberst, J. ;
Seidelmann, P. K. ;
Stooke, P. ;
Tholen, D. J. ;
Thomas, P. C. ;
Williams, I. P. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 109 (02) :101-135
[2]  
Batson R.M., 1981, US GEOL SURV PROF PA, V1080, P225
[3]   Lunar coordinates in the regions of the Apollo landers [J].
Davies, ME ;
Colvin, TR .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2000, 105 (E8) :20277-20280
[4]  
Glaser P, 2010, EPSC ABSTR, V5
[5]   Derivation and Validation of High-Resolution Digital Terrain Models from Mars Express HRSC Data [J].
Gwinner, Klaus ;
Scholten, Frank ;
Spiegel, Michael ;
Schmidt, Ralph ;
Giese, Bernd ;
Oberst, Juergen ;
Heipke, Christian ;
Jaumann, Ralf ;
Neukum, Gerhard .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2009, 75 (09) :1127-1142
[6]  
KAMMERER J, 1973, PHOTOGRAMM ENG REM S, V39, P59
[7]   LUNAR DYNAMICS AND SELENODESY - RESULTS FROM ANALYSIS OF VLBI AND LASER DATA [J].
KING, RW ;
COUNSELMAN, CC ;
SHAPIRO, II .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (35) :6251-6256
[8]   Orbit determination of the Lunar Reconnaissance Orbiter [J].
Mazarico, Erwan ;
Rowlands, D. D. ;
Neumann, G. A. ;
Smith, D. E. ;
Torrence, M. H. ;
Lemoine, F. G. ;
Zuber, M. T. .
JOURNAL OF GEODESY, 2012, 86 (03) :193-207
[9]  
NASA, 1974, JSC08641 NASA MAPP S
[10]  
NASA, 2008, STANDARDIZED LUNAR C