Synchronization of a Novel Hyperchaotic Complex-Variable System Based on Finite-Time Stability Theory

被引:8
作者
Zhou, Xiaobing [1 ]
Jiang, Murong [1 ]
Cai, Xiaomei [2 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Peoples R China
[2] Yunnan Univ, Bur Asset Management, Kunming 650091, Peoples R China
关键词
synchronization; finite-time stability; hyperchaotic system; complex variable; n-scroll attractor; UNKNOWN-PARAMETERS; LORENTZ EQUATIONS; NONLINEAR-SYSTEMS; DETUNED LASERS; LU SYSTEMS;
D O I
10.3390/e15104334
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the finite-time synchronization problem of a novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll attractors. Based on the finite-time stability theory, two control strategies are proposed to realize synchronization of the novel hyperchaotic complex-variable system in finite time. Finally, two numerical examples have been provided to illustrate the effectiveness of the theoretical analysis.
引用
收藏
页码:4334 / 4344
页数:11
相关论文
共 24 条
[1]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[2]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[3]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[4]  
Chen G., 1998, CHAOS ORDER METHODOL
[5]   THE COMPLEX LORENTZ EQUATIONS [J].
FOWLER, AC ;
GIBBON, JD ;
MCGUINNESS, MJ .
PHYSICA D, 1982, 4 (02) :139-163
[6]  
GIBBON JD, 1982, PHYSICA D, V5, P108, DOI 10.1016/0167-2789(82)90053-7
[7]   A system theory approach for designing cryptosystems based on hyperchaos [J].
Grassi, G ;
Mascolo, S .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (09) :1135-1138
[8]   FINITE-TIME CONTROLLERS [J].
HAIMO, VT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (04) :760-770
[9]   Hybrid projective synchronization in a chaotic complex nonlinear system [J].
Hu, Manfeng ;
Yang, Yongqing ;
Xu, Zhenyuan ;
Guo, Liuxiao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) :449-457
[10]   Global finite-time stabilization of a class of uncertain nonlinear systems [J].
Huang, XQ ;
Lin, W ;
Yang, B .
AUTOMATICA, 2005, 41 (05) :881-888