The second discriminant of a univariate polynomial

被引:2
作者
Wang, Dongming [1 ,2 ,3 ,4 ]
Yang, Jing [3 ]
机构
[1] Beihang Univ, LMIB, BDBC, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Guangxi Univ Nationalities, SMS, HCIC, Nanning 530006, Peoples R China
[4] CNRS, F-75794 Paris, France
基金
中国国家自然科学基金;
关键词
determinant; discriminant; polynomial ideal; resultant; root configuration;
D O I
10.1007/s11425-018-1594-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the second discriminantD(2)of a univariate polynomialfof degree greater than 2 as the product of the linear forms 2r(k)-r(i)-r(j)for all triples of rootsr(i),r(k),r(j)offwithi<jandj equivalent to k, k equivalent to i.D(2)vanishes if and only iffhas at least one root which is equal to the average of two other roots. We show thatD(2)can be expressed as the resultant offand a determinant formed with the derivatives off, establishing a new relation between the roots and the coefficients off. We prove several notable properties and present an application ofD(2).
引用
收藏
页码:1157 / 1180
页数:24
相关论文
共 8 条
  • [1] Bezout E., 1779, THESIS
  • [2] Buchberger B., 1985, MULTIDIMENSIONAL SYS, V16, P184, DOI DOI 10.1007/978-94-017-0275-1_4
  • [3] Cohen H, 1993, COURSE COMPUTATIONAL, P119
  • [4] Gelfand IM, 1994, DISCRIMINANTS RESULT
  • [5] Gow R, 1990, IRISH MATH SOC B, V24, P12
  • [6] Mishra B., 1993, Algorithmic Algebra
  • [7] Sylvester J. J., 1851, Math. Mag., V2, P391, DOI DOI 10.1080/14786445108645733
  • [8] Solution formulas for cubic equations without or with constraints
    Zhao, Ting
    Wang, Dongming
    Hong, Hoon
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2011, 46 (08) : 904 - 918