Multi-tiling and Riesz bases

被引:43
|
作者
Grepstad, Sigrid [1 ]
Lev, Nir [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Ctr Recerca Matemat, Bellaterra 08193, Barcelona, Spain
[3] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Riesz bases; Tiling; Quasicrystals; INTERPOLATING-SEQUENCES; QUASI-CRYSTALS; CONJECTURE; SETS;
D O I
10.1016/j.aim.2013.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a bounded, Riemann measurable set in R-d, and Lambda be a lattice. By a theorem of Fuglede, if S tiles R-d with translation set Lambda, then S has an orthogonal basis of exponentials. We show that, under the more general condition that S multi-tiles R-d with translation set Lambda, S has a Riesz basis of exponentials. The proof is based on Meyer's quasicrystals. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] Weyl-Heisenberg Riesz Bases Generated by Two Intervals
    He, Xing-Gang
    Li, Hai-Xiong
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) : 954 - 971
  • [32] RIESZ BASES OF WAVELETS AND APPLICATIONS TO NUMERICAL SOLUTIONS OF ELLIPTIC EQUATIONS
    Jia, Rong-Qing
    Zhao, Wei
    MATHEMATICS OF COMPUTATION, 2011, 80 (275) : 1525 - 1556
  • [33] Riesz bases and their dual modular frames in Hilbert C*-modules
    Han, Deguang
    Jing, Wu
    Larson, David
    Mohapatra, Ram N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 246 - 256
  • [34] Weyl-Heisenberg Riesz Bases Generated by Two Intervals
    Xing-Gang He
    Hai-Xiong Li
    Journal of Fourier Analysis and Applications, 2012, 18 : 954 - 971
  • [35] RIESZ BASES GENERATED BY THE SPECTRA OF STURM-LIOUVILLE PROBLEMS
    Harutyunyan, Tigran
    Pahlevanyan, Avetik
    Srapionyan, Anna
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [36] RIESZ BASES OF REPRODUCING KERNELS IN FOCK-TYPE SPACES
    Borichev, Alexander
    Lyubarskii, Yurii
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2010, 9 (03) : 449 - 461
  • [37] Wavelet Riesz bases in the space l2 (Z)
    Pevnyi, A. B.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2006, 4 (03) : 447 - 459
  • [38] Riesz bases of normalized reproducing kernels in Fock type spaces
    K. P. Isaev
    R. S. Yulmukhametov
    Analysis and Mathematical Physics, 2022, 12
  • [39] CONTROLLABILITY FOR A STRING WITH ATTACHED MASSES AND RIESZ BASES FOR ASYMMETRIC SPACES
    Avdonin, Sergei
    Edward, Julian
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2019, 9 (03) : 453 - 494
  • [40] ORTHOGONAL POLYNOMIALS AND RIESZ BASES APPLIED TO THE SOLUTION OF LOVE'S EQUATION
    Vellucci, Pierluigi
    Bersani, Alberto Maria
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2016, 4 (01) : 55 - 66