Multi-tiling and Riesz bases

被引:43
|
作者
Grepstad, Sigrid [1 ]
Lev, Nir [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
[2] Ctr Recerca Matemat, Bellaterra 08193, Barcelona, Spain
[3] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Riesz bases; Tiling; Quasicrystals; INTERPOLATING-SEQUENCES; QUASI-CRYSTALS; CONJECTURE; SETS;
D O I
10.1016/j.aim.2013.10.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a bounded, Riemann measurable set in R-d, and Lambda be a lattice. By a theorem of Fuglede, if S tiles R-d with translation set Lambda, then S has an orthogonal basis of exponentials. We show that, under the more general condition that S multi-tiles R-d with translation set Lambda, S has a Riesz basis of exponentials. The proof is based on Meyer's quasicrystals. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [21] Riesz Bases of Reproducing Kernels in Small Fock Spaces
    Kellay, K.
    Omari, Y.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
  • [22] Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
    Han, Bin
    Shen, Zuowei
    CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) : 369 - 406
  • [23] Perturbation of frames and Riesz bases in Hilbert C*-modules
    Han, Deguang
    Jing, Wu
    Mohapatra, Ram N.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 746 - 759
  • [24] Riesz Bases of Reproducing Kernels in Small Fock Spaces
    K. Kellay
    Y. Omari
    Journal of Fourier Analysis and Applications, 2020, 26
  • [25] Sampling, interpolation and Riesz bases in small Fock spaces
    Baranov, A.
    Dumont, A.
    Hartmann, A.
    Kellay, K.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06): : 1358 - 1389
  • [26] Riesz bases of exponentials for convex polytopes with symmetric faces
    Debernardi, Alberto
    Lev, Nir
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 3017 - 3029
  • [27] Image Denoising in Industry Based on Multiwavelet Riesz Bases
    Song, QiChao
    Liu, ZhiSong
    Wang, ChaoPing
    ADVANCED RESEARCH ON INDUSTRY, INFORMATION SYSTEM AND MATERIAL ENGINEERING, 2013, 675 : 59 - 62
  • [28] Riesz bases of normalized reproducing kernels in Fock type spaces
    Isaev, K. P.
    Yulmukhametov, R. S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [29] Characterization of Riesz bases of wavelets generated from multiresolution analysis
    Han, Bin
    Jia, Rong-Qing
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (03) : 321 - 345
  • [30] RIESZ BASES, MEYER'S QUASICRYSTALS, AND BOUNDED REMAINDER SETS
    Grepstad, Sigrid
    Lev, Nir
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (06) : 4273 - 4298