States of Convex Sets

被引:13
作者
Jacobs, Bart [1 ]
Westerbaan, Bas [1 ]
Westerbaan, Bram [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, NL-6525 ED Nijmegen, Netherlands
来源
FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2015) | 2015年 / 9034卷
关键词
D O I
10.1007/978-3-662-46678-0_6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
State spaces in probabilistic and quantum computation are convex sets, that is, Eilenberg-Moore algebras of the distribution monad. This article studies some computationally relevant properties of convex sets. We introduce the term effectus for a category with suitable coproducts (so that predicates, as arrows of the shape X -> 1 + 1, form effect modules, and states, arrows of the shape 1 -> X, form convex sets). One main result is that the category of cancellative convex sets is such an effectus. A second result says that the state functor is a "map of effecti". We also define 'normalisation of states' and show how this property is closed related to conditional probability. This is elaborated in an example of probabilistic Bayesian inference.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 15 条
  • [1] Asimow L., 1980, CONVEXITY THEORY ITS
  • [2] Barnum H., 2008, ELECT NOTES THEOR CO, V270, P3
  • [3] BARR M, 1985, TOPOSES TRIPLES THEO, V278
  • [4] SEMICONVEX GEOMETRY
    FLOOD, J
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1981, 30 (APR): : 496 - 510
  • [5] Fritz T., 2009, ARXIV09035522
  • [7] CONVEXITY AND MIXTURES
    GUDDER, SP
    [J]. SIAM REVIEW, 1977, 19 (02) : 221 - 240
  • [8] Heinosaari T., 2012, AMC, V10, P12
  • [9] Jacobs B., 2014, ARXIV12053940V3
  • [10] Jacobs B, 2010, IFIP ADV INF COMM TE, V323, P1