Least-restrictive robust periodic model predictive control applied to room temperature regulation

被引:21
作者
Gondhalekar, Ravi [1 ]
Oldewurtel, Frauke [2 ]
Jones, Colin N. [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[2] Swiss Fed Inst Technol Zurich ETHZ, Power Syst Lab, Zurich, Switzerland
[3] Ecole Polytech Fed Lausanne, Dept Mech Engn, Automat Control Lab, CH-1015 Lausanne, Switzerland
关键词
Model predictive control; Constrained control; Robust control; Periodic control; Building climate control;
D O I
10.1016/j.automatica.2013.05.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State-feedback model predictive control (MPC) of constrained discrete-time periodic affine systems is considered. The periodic systems' states and inputs are subject to periodically time-dependent, hard, polyhedral constraints. Disturbances are additive, bounded and subject to periodically time-dependent bounds. The objective is to design MPC laws that robustly enforce constraint satisfaction in a manner that is least-restrictive, i.e., have the largest possible domain. The proposed design method is demonstrated on a building climate control example. The proposed method is directly applicable to time-invariant MPC. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2760 / 2766
页数:7
相关论文
共 19 条
[1]  
Bemporad A, 1999, LECT NOTES CONTR INF, V245, P207
[2]  
Bittanti S, 2009, COMMUN CONTROL ENG, P1
[3]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[4]   LINEAR-PROGRAMMING APPROACH TO THE CONTROL OF DISCRETE-TIME PERIODIC-SYSTEMS WITH UNCERTAIN INPUTS [J].
BLANCHINI, F ;
UKOVICH, W .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 78 (03) :523-539
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]   MPC for tracking zone regions [J].
Ferramosca, A. ;
Limon, D. ;
Gonzalez, A. H. ;
Odloak, D. ;
Camacho, E. F. .
JOURNAL OF PROCESS CONTROL, 2010, 20 (04) :506-516
[7]   MPC of constrained discrete-time linear periodic systems - A framework for asynchronous control: Strong feasibility, stability and optimality via periodic invariance [J].
Gondhalekar, Ravi ;
Jones, Colin N. .
AUTOMATICA, 2011, 47 (02) :326-333
[8]   Least-restrictive move-blocking model predictive control [J].
Gondhalekar, Ravi ;
Imura, Jun-ichi .
AUTOMATICA, 2010, 46 (07) :1234-1240
[9]   Optimization over state feedback policies for robust control with constraints [J].
Goulart, PJ ;
Kerrigan, EC ;
Maciejowski, JA .
AUTOMATICA, 2006, 42 (04) :523-533
[10]  
Grosman Benyamin, 2010, J Diabetes Sci Technol, V4, P961