Data needs for evidence-based decisions: a tuberculosis modeler's 'wish list'

被引:51
作者
Dowdy, D. W. [1 ,2 ]
Dye, C. [3 ]
Cohen, T. [4 ,5 ]
机构
[1] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[2] Johns Hopkins Univ, Ctr TB Res, Baltimore, MD 21205 USA
[3] WHO, Off Hlth Informat, HIVAIDS TB Malaria & Neglected Trop Dis Cluster, CH-1211 Geneva, Switzerland
[4] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Div Global Hlth Equ, Boston, MA 02115 USA
关键词
tuberculosis; infectious disease transmission; theoretical models; HUMAN-IMMUNODEFICIENCY-VIRUS; INTRINSIC TRANSMISSION DYNAMICS; ISONIAZID PREVENTIVE THERAPY; HIV-INFECTED PATIENTS; LONG-TERM RISK; EXOGENOUS REINFECTION; ANTIRETROVIRAL THERAPY; PULMONARY TUBERCULOSIS; MYCOBACTERIUM-TUBERCULOSIS; MOLECULAR EPIDEMIOLOGY;
D O I
10.5588/ijtld.12.0573
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Infectious disease models are important tools for understanding epidemiology and supporting policy decisions for disease control. In the case of tuberculosis (TB), such models have informed our understanding and control strategies for over 40 years, but the primary assumptions of these models-and their most urgent data needs-remain obscure to many TB researchers and control officers. The structure and parameter values of TB models are informed by observational studies and experiments, but the evidence base in support of these models remains incomplete. Speaking from the perspective of infectious disease modelers addressing the broader TB research and control communities, we describe the basic structure common to most TB models and present a 'wish list' that would improve the evidence foundation upon which these models are built. As a comprehensive TB research agenda is formulated, we argue that the data needs of infectious disease models-our primary long-term decision-making tools-should figure prominently.
引用
收藏
页码:866 / 877
页数:12
相关论文
共 124 条
  • [1] Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics
    Abu-Raddad, Laith J.
    Sabatelli, Lorenzo
    Achterberg, Jerusha T.
    Sugimoto, Jonathan D.
    Longini, Ira M., Jr.
    Dye, Christopher
    Halloran, M. Elizabeth
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (33) : 13980 - 13985
  • [2] Evaluation of a model for efficient screening of tuberculosis contact subjects
    Aissa, Khaoula
    Madhi, Fouad
    Ronsin, Nathalie
    Delarocque, France
    Lecuyer, Aurelie
    Decludt, Benedicte
    Remus, Natacha
    Abel, Laurent
    Poirier, Christine
    Delacourt, Christophe
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2008, 177 (09) : 1041 - 1047
  • [3] Within-host population dynamics of antibiotic-resistant M. tuberculosis
    Alavez-Ramirez, Justino
    Avendano Castellanos, J. Rogelio
    Esteva, Lourdes
    Antonio Flores, Jose
    Fuentes-Allen, Jose Luis
    Garcia-Ramos, Gisela
    Gomez, Guillermo
    Lopez-Estrada, Jesus
    [J]. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2007, 24 (01): : 35 - 56
  • [4] ANDERSON R M, 1991
  • [5] Risk of Progression to Active Tuberculosis Following Reinfection With Mycobacterium tuberculosis
    Andrews, Jason R.
    Noubary, Farzad
    Walensky, Rochelle P.
    Cerda, Rodrigo
    Losina, Elena
    Horsburgh, C. Robert
    [J]. CLINICAL INFECTIOUS DISEASES, 2012, 54 (06) : 784 - 791
  • [6] [Anonymous], 1999, EPIDEMIOLOGIC BASIS
  • [7] [Anonymous], GUID INT TUB CAS FIN
  • [8] RISK-FACTORS FOR TUBERCULOSIS IN HIV-INFECTED PERSONS - A PROSPECTIVE COHORT STUDY
    ANTONUCCI, G
    GIRARDI, E
    RAVIGLIONE, MC
    IPPOLITO, G
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1995, 274 (02): : 143 - 148
  • [9] AYLES H, 2009, PLOS ONE, V4
  • [10] Modeling the joint epidemics of TB and HIV in a South African township
    Bacaer, Nicolas
    Ouifki, Rachid
    Pretorius, Carel
    Wood, Robin
    Williams, Brian
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (04) : 557 - 593