Statistics of the work done by splitting a one-dimensional quasicondensate

被引:56
|
作者
Sotiriadis, Spyros [1 ,2 ,3 ]
Gambassi, Andrea [3 ,4 ]
Silva, Alessandro [3 ,5 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] SISSA Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, Milan, Italy
[5] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
FREE-ENERGY; QUANTUM; FIELD; FLUCTUATIONS; RELAXATION; DYNAMICS;
D O I
10.1103/PhysRevE.87.052129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by experiments on splitting one-dimensional quasicondensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its behavior at the lowest energy threshold, which develops an edge singularity. A formal connection between this probability distribution and the critical Casimir effect in thin classical films shows that certain features of the edge singularity are universal as the postquench gap tends to zero. Our results are quantitatively illustrated by an exact calculation for noninteracting bosonic systems. The effects of finite system size, dimensionality, and nonzero initial temperature are discussed in detail.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] STATISTICS OF ONE-DIMENSIONAL MODEL OF SOLID-SOLUTION
    BALAGUROV, BY
    VAKS, VG
    ZAITSEV, RO
    FIZIKA TVERDOGO TELA, 1974, 16 (08): : 2302 - 2309
  • [32] STATISTICS OF A ONE-DIMENSIONAL MODEL OF A SOLID SOLUTION.
    Balagurov, B.Ya.
    Vaks, V.G.
    Zaitsev, R.O.
    Soviet Physics, Solid State (English translation of Fizika Tverdogo Tela), 1975, 16 (08): : 1498 - 1502
  • [33] Solar flare statistics with a one-dimensional MHD model
    Galtier, S
    Pouquet, A
    SOLAR PHYSICS, 1998, 179 (01) : 141 - 165
  • [34] Wasserstein statistics in one-dimensional location scale models
    Amari, Shun-ichi
    Matsuda, Takeru
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (01) : 33 - 47
  • [35] Probing the exchange statistics of one-dimensional anyon models
    Greschner, Sebastian
    Cardarelli, Lorenzo
    Santos, Luis
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [36] Importance sampling for counting statistics in one-dimensional systems
    Burenev, Ivan N.
    Majumdar, Satya N.
    Rosso, Alberto
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [37] Wasserstein statistics in one-dimensional location scale models
    Shun-ichi Amari
    Takeru Matsuda
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 33 - 47
  • [38] Complete visitation statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Redner, S.
    Benichou, Olivier
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [39] Resistance Statistics in one-dimensional systems with correlated disorder
    deOliveira, MJ
    Petri, A
    PHYSICAL REVIEW B, 1997, 56 (01) : 251 - 259
  • [40] Level statistics of the one-dimensional ionic Hubbard model
    De Marco, Jeannette
    Tolle, Luisa
    Halati, Catalin-Mihai
    Sheikhan, Ameneh
    Laeuchli, Andreas M.
    Kollath, Corinna
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):