Statistics of the work done by splitting a one-dimensional quasicondensate

被引:56
|
作者
Sotiriadis, Spyros [1 ,2 ,3 ]
Gambassi, Andrea [3 ,4 ]
Silva, Alessandro [3 ,5 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
[3] SISSA Int Sch Adv Studies, I-34136 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, Milan, Italy
[5] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 05期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
FREE-ENERGY; QUANTUM; FIELD; FLUCTUATIONS; RELAXATION; DYNAMICS;
D O I
10.1103/PhysRevE.87.052129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motivated by experiments on splitting one-dimensional quasicondensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its behavior at the lowest energy threshold, which develops an edge singularity. A formal connection between this probability distribution and the critical Casimir effect in thin classical films shows that certain features of the edge singularity are universal as the postquench gap tends to zero. Our results are quantitatively illustrated by an exact calculation for noninteracting bosonic systems. The effects of finite system size, dimensionality, and nonzero initial temperature are discussed in detail.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Thermalization of a quantum Newton's cradle in a one-dimensional quasicondensate
    Thomas, Kieran F.
    Davis, Matthew J.
    Kheruntsyan, Karen, V
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [2] THE STATISTICS OF ONE-DIMENSIONAL RESISTANCES
    KIRKMAN, PD
    PENDRY, JB
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (24): : 4327 - 4344
  • [3] Frequency beating and damping of breathing oscillations of a harmonically trapped one-dimensional quasicondensate
    Bayocboc Jr, Francis A.
    Kheruntsyan, Karen, V
    COMPTES RENDUS PHYSIQUE, 2023, 24
  • [4] NORMALIZATION OF ONE-DIMENSIONAL LATTICE STATISTICS
    MCQUISTAN, RB
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) : 1055 - 1056
  • [5] STATISTICS OF ONE-DIMENSIONAL CLUSTER MOTION
    WRIGLEY, JD
    REED, DA
    EHRLICH, G
    JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (02): : 781 - 792
  • [6] Statistics of the One-Dimensional Riemann Walk
    A. M. Mariz
    F. van Wijland
    H. J. Hilhorst
    S. R. Gomes Júnior
    C. Tsallis
    Journal of Statistical Physics, 2001, 102 : 259 - 283
  • [7] Statistics of defects in one-dimensional components
    Todinov, MT
    COMPUTATIONAL MATERIALS SCIENCE, 2002, 24 (04) : 430 - 442
  • [8] Statistics of the one-dimensional Riemann walk
    Mariz, AM
    van Wijland, F
    Hilhorst, HJ
    Gomes, SR
    Tsallis, C
    JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (1-2) : 259 - 283
  • [9] Quench action and large deviations: Work statistics in the one-dimensional Bose gas
    Perfetto, Gabriele
    Piroli, Lorenzo
    Gambassi, Andrea
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [10] Governing soliton splitting in one-dimensional lattices
    Fratalocchi, A
    Assanto, G
    PHYSICAL REVIEW E, 2006, 73 (04):