Deep Geodesic Learning for Segmentation and Anatomical Landmarking

被引:98
作者
Torosdagli, Neslisah [1 ]
Liberton, Denise K. [2 ]
Verma, Payal [2 ]
Sincan, Murat [3 ]
Lee, Janice S. [2 ]
Bagci, Ulas [1 ]
机构
[1] Univ Cent Florida, Ctr Comp Vis Res, Orlando, FL 32816 USA
[2] Natl Inst Dent & Craniofacial Res, Craniofacial Anomalies & Regenerat Sect, NIH, Bethesda, MD 20892 USA
[3] Univ South Dakota, Sanford Sch Med, Sioux Falls, SD 57069 USA
关键词
Mandible segmentation; craniomaxillofacial deformities; deep learning; convolutional neural network; geodesic mapping; cone beam computed tomography (CBCT);
D O I
10.1109/TMI.2018.2875814
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a novel deep learning framework for anatomy segmentation and automatic landmarking. Specifically, we focus on the challenging problem of mandible segmentation from cone-beam computed tomography (CBCT) scans and identification of 9 anatomical landmarks of the mandible on the geodesic space. The overall approach employs three inter-related steps. In the first step, we propose a deep neural network architecture with carefully designed regularization, and network hyper-parameters to perform image segmentation without the need for data augmentation and complex post-processing refinement. In the second step, we formulate the landmark localization problem directly on the geodesic space for sparsely-spaced anatomical landmarks. In the third step, we utilize a long short-term memory network to identify the closely-spaced landmarks, which is rather difficult to obtain using other standard networks. The proposed fully automated method showed superior efficacy compared to the state-of-the-art mandible segmentation and landmarking approaches in craniofacial anomalies and diseased states. We used a very challenging CBCT data set of 50 patients with a high-degree of craniomaxillofacial variability that is realistic in clinical practice. The qualitative visual inspection was conducted for distinct CBCT scans from 250 patients with high anatomical variability. We have also shown the state-of-the-art performance in an independent data set from the MICCAI Head-Neck Challenge (2015).
引用
收藏
页码:919 / 931
页数:13
相关论文
共 30 条
[1]   Randomized Phase III Trial of Concurrent Accelerated Radiation Plus Cisplatin With or Without Cetuximab for Stage III to IV Head and Neck Carcinoma: RTOG 0522 [J].
Ang, K. Kian ;
Zhang, Qiang ;
Rosenthal, David I. ;
Nguyen-Tan, Phuc Felix ;
Sherman, Eric J. ;
Weber, Randal S. ;
Galvin, James M. ;
Bonner, James A. ;
Harris, Jonathan ;
El-Naggar, Adel K. ;
Gillison, Maura L. ;
Jordan, Richard C. ;
Konski, Andre A. ;
Thorstad, Wade L. ;
Trotti, Andy ;
Beitler, Jonathan J. ;
Garden, Adam S. ;
Spanos, William J. ;
Yom, Sue S. ;
Axelrod, Rita S. .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (27) :2940-+
[2]  
[Anonymous], MIDAS J HEAD NECK AU
[3]  
[Anonymous], 2016, 100 LAYERS TIRAMISU
[4]  
Anuwongnukroh N., 2017, MATER SCI ENG, V265
[5]   Influence of third molars in mandibular fractures. Part 1: mandibular angle-a meta-analysis [J].
Armond, A. C. V. ;
Martins, C. C. ;
Gloria, J. C. R. ;
Galvao, E. L. ;
dos Santos, C. R. R. ;
Falci, S. G. M. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2017, 46 (06) :716-729
[6]   A survey of geodesic paths on 3D surfaces [J].
Bose, Prosenjit ;
Maheshwari, Anil ;
Shu, Chang ;
Wuhrer, Stefanie .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (09) :486-498
[7]  
Brain Google., 2018, 6 INT C LEARNING REP
[8]   LINEAR-TIME EUCLIDEAN DISTANCE TRANSFORM ALGORITHMS [J].
BREU, H ;
GIL, J ;
KIRKPATRICK, D ;
WERMAN, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (05) :529-533
[9]  
Datar M, 2013, LECT NOTES COMPUT SC, V8150, P19, DOI 10.1007/978-3-642-40763-5_3
[10]   2D Euclidean distance transform algorithms: A comparative survey [J].
Fabbri, Ricardo ;
Costa, Luciano Da F. ;
Torelli, Julio C. ;
Bruno, Odemir M. .
ACM COMPUTING SURVEYS, 2008, 40 (01)