DUALITY FOR RELATIVE LOGARITHMIC DE RHAM-WITT SHEAVES ON SEMISTABLE SCHEMES OVER Fq [[t]]

被引:0
作者
Zhao, Yigeng [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
来源
DOCUMENTA MATHEMATICA | 2018年 / 23卷
关键词
logarithmic de Rham-Witt sheaf; purity; etale duality; etale fundamental group; semistable scheme; ramification; filtration; class field theory; CLASS FIELD-THEORY; LOCAL-RINGS; CONJECTURE; VARIETIES; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study duality theorems for the relative logarithmic de Rham-Witt sheaves on semi-stable schemes X over a local ring F-q[[t]], where F-q is a finite field. As an application, we obtain a new filtration on the maximal abelian quotient pi(ab)(1)(U) of the etale fundamental groups pi(1)(U) of an open subscheme U subset of X, which gives a measure of ramification along a divisor D with normal crossing and Supp(D) subset of X - U. This filtration coincides with the Brylinski-Kato-Matsuda filtration in the relative dimension zero case.
引用
收藏
页码:1925 / 1967
页数:43
相关论文
共 48 条
  • [1] [Anonymous], 1989, CAMBRIDGE STUDIES AD
  • [2] [Anonymous], 1972, LECT NOTES MATH
  • [3] [Anonymous], 1957, Tohoku Math. Journ., DOI [10.2748/tmj/1178244839, DOI 10.2748/TMJ/1178244839]
  • [4] [Anonymous], 1980, PRINCETON MATH SERIE
  • [5] [Anonymous], 2018, STACKS PROJECT
  • [6] [Anonymous], 2002, AZUMINO ADV STUD PUR
  • [7] ARTIN M, 1972, LECT NOTES MATH, V305
  • [8] ARTIN M., 1972, Theorie des topos et cohomologie etale des schemas, V305
  • [9] BLOCH S, 1986, PUBL MATH-PARIS, P107
  • [10] BRYLINSKI JL, 1983, ANN I FOURIER, V33, P23