Managing Risk with Short-Term Futures Contracts

被引:2
作者
Wu, Zhijian [1 ]
Yu, Chunhui [2 ]
Zheng, Xiaohua [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Alabama A&M Univ, Dept Math, Normal, AL 35762 USA
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2011年 / 2卷 / 01期
关键词
optimal hedging; spot risk; futures contracts; STRATEGY;
D O I
10.1137/100782437
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Under the constraint of terminal risk, we search for an optimal deterministic strategy to reduce the running risk in hedging a long-term commitment with short-term futures contracts. An explicit solution is given if the underlying stock follows the simple stochastic differential equation dS(t) = mu dt + sigma dB(t), where B-t is the standard Brownian motion. Our result generalizes the result of Larcher and Leobacher in [Math. Finance, 13 (2003), pp. 331-344]. As an application, we provide a solution to the utility optimization problem posed in that paper.
引用
收藏
页码:715 / 726
页数:12
相关论文
共 9 条
[1]  
Buhler W., 2004, REV DERIV RES, V7, P185
[2]  
Culp C.L., 1995, J APPL CORPORATE FIN, V7, P62
[3]  
Culp Christopher, 1999, CORPORATE HEDGING TH
[4]   THE COLLAPSE OF METALLGESELLSCHAFT - UNHEDGEABLE RISKS, POOR HEDGING STRATEGY, OR JUST BAD LUCK [J].
EDWARDS, FR ;
CANTER, MS .
JOURNAL OF FUTURES MARKETS, 1995, 15 (03) :211-264
[5]  
Glasserman P, 2001, HANDBOOKS IN MATHEMATICAL FINANCE: OPTION PRICING, INTEREST RATES AND RISK MANAGEMENT, P477
[6]   An optimal strategy for hedging with short-term futures contracts [J].
Larcher, G ;
Leobacher, G .
MATHEMATICAL FINANCE, 2003, 13 (02) :331-344
[8]  
MELLO A. S, 1995, WORKING PAPER
[9]  
Rudin W., 1976, INT SERIES PURE APPL