Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries

被引:97
作者
Luo, Chao [1 ]
Wang, Jingjing [2 ]
Fan, Xiulin [1 ]
Zhu, Yujie [1 ]
Han, Fudong [1 ]
Suo, Liumin [1 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
关键词
Organic electrode; Na-ion batteries; Anode; Nanorod; Roll-to-roll fabrication; ANODE MATERIAL; LITHIUM; INSERTION; TEREPHTHALATE; PERFORMANCES; COMPOSITE; SELENIUM;
D O I
10.1016/j.nanoen.2015.03.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic electroactive materials derived from biomasses are promising candidates for next generation rechargeable batteries due to the low cost, sustainability and environmental benignity. Since organic materials have very low electronic conductivity, they are normally synthesized into nano-scale and mixed with conductive carbon before electrode fabrication. Herein, we first reported a unique role-to-role fabrication technology by taking advantage of the high solubility of organic materials in water. The synthetic process of nano-size organic materials is merged into the organic electrode fabrication process. 2,5-Dihydroxy-1,4-benzoquinone disodium salt (DHBQDS) is used as a model, and the DHBQDS nanorod electrode is in situ formed by precipitating DHBQDS nanorods from DHBQDS-sodium alginate-carbon black aqueous slurry film on a Cu current collector during electrode drying process. Due to the fast ionic and electronic conductivity of DHBQDS-carbon nanocomposite, the DHBQDS nanorod electrodes deliver a reversible capacity of 167 mA h g(-1) at a high current density of 200 mA g(-1) after 300 cycles, which is 87% of its initial capacity (capacity decay rate of 0.051% per cycle). To reduce the dissolution of DHBQDS in the electrolyte upon cycling, a thin layer of Al2O3 with thickness of 1 nm or 2 nm is coated on the DHBQDS nanorod electrodes using atomic layer deposition (ALD). The Al2O3 coating remarkably suppresses the dissolution of DHBQDS nanorods as evidenced by the increased Coulombic efficiency from 94% to similar to 100% at a low current density of 50 mA g(-1). The reversible capacity of Al2O3 coated DHBQDS nanorod electrodes remains at 212 mA h g(-1) after 300 cycles with a very low capacity decay rate of 0.049% per cycle. The ALD enhanced organic nanorods exhibit the best reversible capacity and cycle life among the organic electrodes reported for Na-ion batteries. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 38 条
[1]   Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells [J].
Abouimrane, Ali ;
Weng, Wei ;
Eltayeb, Hussameldin ;
Cui, Yanjie ;
Niklas, Jens ;
Poluektov, Oleg ;
Amine, Khalil .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9632-9638
[2]   A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium-Sulfur as a Positive Electrode [J].
Abouimrane, Ali ;
Dambournet, Damien ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Weng, Wei ;
Amine, Khalil .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4505-4508
[3]  
Armand M, 2009, NAT MATER, V8, P120, DOI [10.1038/nmat2372, 10.1038/NMAT2372]
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[6]   From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries [J].
Chen, Haiyan ;
Armand, Michel ;
Demailly, Gilles ;
Dolhem, Franck ;
Poizot, Philippe ;
Tarascon, Jean-Marie .
CHEMSUSCHEM, 2008, 1 (04) :348-355
[7]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[8]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[9]  
Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/NMAT3478, 10.1038/nmat3478]
[10]   MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries [J].
Hu, Zhe ;
Wang, Lixiu ;
Zhang, Kai ;
Wang, Jianbin ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (47) :12794-12798