Lithiophilic Li-Zn alloy modified 3D Cu foam for dendrite-free lithium metal anode

被引:80
作者
Ye, Yu [1 ]
Liu, Yutao [1 ]
Wu, Jiliang [1 ,2 ]
Yang, Yifu [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Key Lab Electrochem Power Sources, Wuhan 430072, Peoples R China
[2] Wuhan Zhongyuan Changjiang Technol Dev Co Ltd 752, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium metal anode; Lithium metal battery; Three-dimensional substrate; Li-Zn alloy; Lithiophilic surface; BATTERIES; SUBSTRATE; ENERGY; FILM;
D O I
10.1016/j.jpowsour.2020.228520
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three-dimensional (3D) materials are the potential promising lithium (Li) metal anode (LMA) substrates for alleviating volume expansion and inhibiting dendrite formation in high energy density battery systems. Herein, we propose a 3D substrate functioned with Li-Zn lithiophilic alloy surface through lithiation of the electrochemically deposited Zn on Cu foam (3D Li-Zn@Cu foam). This substrate can induce uniform Li deposition along the conductive skeleton, effectively reduce the Li nucleation overpotential and suppress Li dendrite formation. As a result, this substrate exhibits an excellent coulombic efficiency (CE) of 97.8% for 260 cycles at 1 mA cm(-2), and with dendrite-free morphology at ultrahigh cycling capacity of 10 mAh cm(-2). Symmetric cells with Li-deposited Li-Zn@Cu foam (Li@Li-Zn@Cu foam) electrode can be stably operated over twice lifespan than that of Li@Cu foam. Furthermore, full cells paired with LiFePO4 or sulfur cathodes exhibit remarkable discharge capacities and capacity retention. It is well confirmed that the Li-Zn alloy coating method provides a new light on modifying the surface of 3D skeleton materials for dendrite-free LMA.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Nucleation and Early Stage Growth of Li Electrodeposits [J].
Biswal, Prayag ;
Stalin, Sanjuna ;
Kludze, Atsu ;
Choudhury, Snehashis ;
Archer, Lynden A. .
NANO LETTERS, 2019, 19 (11) :8191-8200
[2]   Enhancement of the lithium cycling capability using Li-Zn alloy substrate for lithium metal batteries [J].
Chen, Chen ;
Yang, Yifu ;
Shao, Huixia .
ELECTROCHIMICA ACTA, 2014, 137 :476-483
[3]   Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes [J].
Chen, Lin ;
Chen, Kan-Sheng ;
Chen, Xinjie ;
Ramirez, Giovanni ;
Huang, Zhennan ;
Geise, Natalie R. ;
Steinruck, Hans-Georg ;
Fisher, Brandon L. ;
Shahbazian-Yassar, Reza ;
Toney, Michael F. ;
Hersam, Mark C. ;
Elam, Jeffrey W. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (32) :26972-26981
[4]   Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes [J].
Chen, Xiang ;
Chen, Xiao-Ru ;
Hou, Ting-Zheng ;
Li, Bo-Quan ;
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhang, Qiang .
SCIENCE ADVANCES, 2019, 5 (02)
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
ACS NANO, 2015, 9 (06) :6373-6382
[7]   Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries [J].
Chi, Shang-Sen ;
Liu, Yongchang ;
Zhao, Ning ;
Guo, Xiangxin ;
Nan, Ce-Wen ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2019, 17 :309-316
[8]   Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries [J].
Ghazi, Zahid Ali ;
Sun, Zhenhua ;
Sun, Chengguo ;
Qi, Fulai ;
An, Baigang ;
Li, Feng ;
Cheng, Hui-Ming .
SMALL, 2019, 15 (32)
[9]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[10]   Flexible Amalgam Film Enables Stable Lithium Metal Anodes with High Capacities [J].
He, Guang ;
Li, Qingwen ;
Shen, Yongli ;
Ding, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (51) :18466-18470