The morphological stability and fuel production of commercial fibrous ceria particles for solar thermochemical redox cycling

被引:28
作者
Gladen, Adam C. [1 ]
Davidson, Jane H. [1 ]
机构
[1] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA
关键词
Cerium dioxide; Solar thermochemical; Morphology; Redox; CO2; DENSIFICATION; THERMODYNAMICS; EFFICIENCY; DIFFUSION; KINETICS; COMPACTS; REACTOR; MODEL; CEO2;
D O I
10.1016/j.solener.2016.10.029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Implementation of the solar thermochemical ceria redox cycle to split water and carbon dioxide depends in part on the morphological stability of a porous ceria substrate and the ability to acquire porous substrate in high volume. Here we evaluate the evolution of morphology and fuel production of ceria particles formed of fibers in a commercially relevant manufacturing process. The particles are evaluated over 1000 CO2-splitting cycles (56 h) at 1773 K followed by sixteen temperature-swing cycles (5.7 h) with oxidation at 1073 K. New particles are 78% porous with a specific surface area of 0.14 m(2) g(-1) and a grain size of 3.7 m. During isothermal cycling, the morphology stabilized after 500 cycles (28 h) to 73% porosity, a surface face 0.08 m(2) g(-1) and a grain size of 8 The stabilized particles retained 89% of the peak cycle average rate of CO production. During temperature-swing cycling, the specific surface area decreased to 0.06 m(2) g(-1). The mass-produced fibrous structures have adequately stable morphologies to produce fuel production performance similar to less scalable (lab-scale) ceria structures of similar pre-cycling surface area. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:524 / 532
页数:9
相关论文
共 39 条
[1]   Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles [J].
Ackermann, Simon ;
Scheffe, Jonathan R. ;
Steinfeldt, Aldo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (10) :5216-5225
[2]  
[Anonymous], CERAMIC PROCESSING S
[3]   Design of a Solar Reactor to Split CO2 Via Isothermal Redox Cycling of Ceria [J].
Bader, Roman ;
Chandran, Rohini Bala ;
Venstrom, Luke J. ;
Sedler, Stephen J. ;
Krenzke, Peter T. ;
De Smith, Robert M. ;
Banerjee, Aayan ;
Chase, Thomas R. ;
Davidson, Jane H. ;
Lipinski, Wojciech .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (03)
[4]   Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide [J].
Bishop, S. R. ;
Duncan, K. L. ;
Wachsman, E. D. .
ELECTROCHIMICA ACTA, 2009, 54 (05) :1436-1443
[5]   Counter flow sweep gas demand for the ceria redox cycle [J].
Brendelberger, Stefan ;
Roeb, Martin ;
Lange, Matthias ;
Sattler, Christian .
SOLAR ENERGY, 2015, 122 :1011-1022
[6]   Thermodynamics of CeO2 Thermochemical Fuel Production [J].
Bulfin, B. ;
Call, F. ;
Lange, M. ;
Lubben, O. ;
Sattler, C. ;
Pitz-Paal, R. ;
Shvets, I. V. .
ENERGY & FUELS, 2015, 29 (02) :1001-1009
[7]   Model of transport and chemical kinetics in a solar thermochemical reactor to split carbon dioxide [J].
Chandran, Rohini Bala ;
Davidson, Jane H. .
CHEMICAL ENGINEERING SCIENCE, 2016, 146 :302-315
[8]   Model of an integrated solar thermochemical reactor/reticulated ceramic foam heat exchanger for gas-phase heat recovery [J].
Chandran, Rohini Bala ;
De Smith, Robert M. ;
Davidson, Jane H. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 81 :404-414
[9]   High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria [J].
Chueh, William C. ;
Falter, Christoph ;
Abbott, Mandy ;
Scipio, Danien ;
Furler, Philipp ;
Haile, Sossina M. ;
Steinfeld, Aldo .
SCIENCE, 2010, 330 (6012) :1797-1801
[10]   A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation [J].
Chueh, William C. ;
Haile, Sossina M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1923) :3269-3294