Ricci solitons and gradient Ricci solitons on 3-dimensional normal almost contact metric manifolds

被引:0
|
作者
De, Uday Chand [1 ]
Turan, Mine [2 ]
Yildiz, Ahmet [2 ]
De, Avik [1 ]
机构
[1] Univ Calcutta, Dept Pure Math, Kolkata 700019, W Bengal, India
[2] Dumlupinar Univ, Dept Math, Art & Sci Fac, Kutahya, Turkey
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 80卷 / 1-2期
关键词
normal almost contact metric manifold; Ricci soliton; gradient Ricci soliton; Einstein manifold; eta-Einstein manifold; QUASI-EINSTEIN METRICS; RENORMALIZABILITY PROPERTIES; COMPACT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The object of the present paper is to study a 3-dimensional normal almost contact metric manifold admitting Ricci solitons and gradient Ricci solitons. At first we give an example of a 3-dimensional normal almost contact metric manifold with alpha,beta = constant. We prove that a 3-dimensional normal almost contact metric manifold admitting a Ricci soliton with a potential vector field V collinear with the characteristic vector field xi, is eta-Einstein provided alpha,beta = constant. Also we show that an eta-Einstein 3-dimensional normal almost contact metric manifold with alpha,beta = constant and V = xi admits a Ricci soliton. Finally we prove that if in a 3-dimensional normal almost contact metric manifold with constant scalar curvature, g is a gradient Ricci soliton, then the manifold is either alpha-Kenmotsu or an Einstein manifold provided alpha,beta = constant.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条