The influence of sequential ligand exchange and elimination on the performance of P3HT:CdSe quantum dot hybrid solar cells

被引:11
作者
Lee, Donggu [1 ]
Lim, Jaehoon [1 ,2 ]
Park, Myeongjin [1 ]
Kim, Jun Young [1 ]
Song, Jiyun [1 ]
Kwak, Jeonghun [3 ]
Lee, Seonghoon [4 ]
Char, Kookheon [5 ]
Lee, Changhee [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr, Dept Elect & Comp Engn, Seoul 08826, South Korea
[2] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA
[3] Univ Seoul, Sch Elect & Comp Engn, Seoul 02504, South Korea
[4] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[5] Seoul Natl Univ, Sch Chem & Biol Engn, WCU Program Chem Convergence Energy & Environm, Natl Creat Res Initiat Ctr Intelligent Hybrids, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
polymer-QD hybrid solar cells; ligand exchange and elimination; CdSe quantum dots (QDs); poly(3-hexylthiophene) (P3HT); CDSE NANOCRYSTALS; EQUIVALENT-CIRCUIT; CONJUGATED POLYMER; SURFACE TRAPS; EFFICIENCY; RECOMBINATION; NANOPARTICLES; NANORODS; AMINE; SIZE;
D O I
10.1088/0957-4484/26/46/465401
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report on a sequential ligand exchange and elimination process for the fast and easy surface modification of CdSe quantum dots (QDs) in order to improve the electronic interaction between poly(3-hexylthiophene) (P3HT) and CdSe QDs in P3HT: CdSe hybrid solar cells. We systematically investigated the influence of surface treatment on the insulating ligand shell of CdSe QDs using H-1-NMR analysis, and correlated their influence on the photovoltaic properties of P3HT: CdSe hybrid solar cells. A decrease in the average thickness of the ligand shells directly improved carrier transport properties. Moreover, the presence of remnant 1-hexylamine ligands provided efficient surface trap passivation. As a result, overall solar cell performance (especially fill factor and power conversion efficiency) was enhanced and the recombination mechanism was dominated by monomolecular recombination due to enhanced carrier collection length (l(C0)).
引用
收藏
页数:9
相关论文
共 31 条
  • [1] Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer
    Beek, WJE
    Wienk, MM
    Janssen, RAJ
    [J]. ADVANCED MATERIALS, 2004, 16 (12) : 1009 - +
  • [2] Bernadette C, 2015, CHEM ORGANOHYBRIDS S, P240
  • [3] Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells
    Chirvase, D
    Chiguvare, Z
    Knipper, A
    Parisi, J
    Dyakonov, V
    Hummelen, JC
    [J]. SYNTHETIC METALS, 2003, 138 (1-2) : 299 - 304
  • [4] Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency
    Dayal, Smita
    Kopidakis, Nikos
    Olson, Dana C.
    Ginley, David S.
    Rumbles, Garry
    [J]. NANO LETTERS, 2010, 10 (01) : 239 - 242
  • [5] High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols
    Fu, Weifei
    Shi, Ye
    Qiu, Weiming
    Wang, Ling
    Nan, Yaxiong
    Shi, Minmin
    Li, Hanying
    Chen, Hongzheng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (35) : 12094 - 12098
  • [6] Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity
    Greenham, NC
    Peng, XG
    Alivisatos, AP
    [J]. PHYSICAL REVIEW B, 1996, 54 (24): : 17628 - 17637
  • [7] Influence of electric field distortion and i-layer quality on the collection function of drift-driven a-Si:H solar cells
    Hof, C
    Wyrsch, N
    Shah, A
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 : 1114 - 1118
  • [8] EFFECTS OF DANGLING BONDS ON THE RECOMBINATION FUNCTION IN AMORPHOUS-SEMICONDUCTORS
    HUBIN, J
    SHAH, AV
    SAUVAIN, E
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 1992, 66 (03) : 115 - 125
  • [9] Hybrid nanorod-polymer solar cells
    Huynh, WU
    Dittmer, JJ
    Alivisatos, AP
    [J]. SCIENCE, 2002, 295 (5564) : 2425 - 2427
  • [10] Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals
    Jasieniak, Jacek
    Califano, Marco
    Watkins, Scott E.
    [J]. ACS NANO, 2011, 5 (07) : 5888 - 5902