A deep Learning Scheme for Automatic Seizure Detection from Long-Term Scalp EEG

被引:0
|
作者
Yuvaraj, Rajamanickam [1 ]
Thomas, John [1 ]
Kluge, Tilmann [2 ]
Dauwels, Justin [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] AIT, Ctr Hlth & Bioresources, Vienna, Austria
关键词
PREDICTION; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Epilepsy is a chronic brain disorder that is expressed by seizures. Monitoring brain activity via electroencephalogram (EEG) is an established method for epilepsy diagnosis and for monitoring epilepsy patients. Yet, it is not favorable to visually inspect EEG signals to diagnose epilepsy, especially in the case of long-term recordings. This process is time consuming and tedious error-prone exercise. In recent years, the sub-field of machine learning called deep learning has achieved remarkable success in various artificial intelligence research areas. In this paper, we present a method based on the deep convolutional neural networks (CNNs) to perform unsupervised feature learning framework for automated seizure onset detection. The proposed system was evaluated on 526 hours duration of scalp EEG data, including 181 seizures of 23 pediatric patients. The different parameters of CNNs were optimized through 4-fold nested cross-validation. The resulting generalized CNN seizure detection model achieved an average sensitivity of 86.29%, an average false detection rate of 0.74 h-1 and an average detection latency of 2.1 sec.
引用
收藏
页码:368 / 372
页数:5
相关论文
共 50 条
  • [1] Long-cherished dreams for epileptologists and clinical neurophysiologists: Automatic seizure detection in long-term scalp EEG
    Jin, Kazutaka
    Nakasato, Nobukazu
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (07) : 1289 - 1290
  • [2] Automatic Seizure Detection In Long-Term Scalp EEG Using Weighted Permutation Entropy and Support Vector Machine
    Seddik, Noha
    Youssef, Sherine
    Kholief, Mohamed
    2014 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2014, : 170 - 173
  • [3] Automatic seizure detection in long-term scalp EEG using an adaptive thresholding technique: A validation study for clinical routine
    Hopfengaertner, Ruediger
    Kasper, Burkhard S.
    Graf, Wolfgang
    Gollwitzer, Stephanie
    Kreiselmeyer, Gernot
    Stefan, Hermann
    Hamer, Hajo
    CLINICAL NEUROPHYSIOLOGY, 2014, 125 (07) : 1346 - 1352
  • [4] CNN-Informer: A hybrid deep learning model for seizure detection on long-term EEG
    Li, Chuanyu
    Li, Haotian
    Dong, Xingchen
    Zhong, Xiangwen
    Cui, Haozhou
    Ji, Dezan
    He, Landi
    Liu, Guoyang
    Zhou, Weidong
    NEURAL NETWORKS, 2025, 181
  • [5] Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG
    Liu, Yinxia
    Zhou, Weidong
    Yuan, Qi
    Chen, Shuangshuang
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (06) : 749 - 755
  • [6] Automatic seizure detection using Stockwell transform and boosting algorithm for long-term EEG
    Yan, Aiyu
    Zhou, Weidong
    Yuan, Qi
    Yuan, Shasha
    Wu, Qi
    Zhao, Xiuhe
    Wang, Jiwen
    EPILEPSY & BEHAVIOR, 2015, 45 : 8 - 14
  • [7] AUTOMATIC ANALYSIS AND TRENDING OF LONG-TERM SCALP EEG USING NEUROTREND
    Fuerbass, F.
    Hartmann, M.
    Perko, H.
    Weinkopf, M.
    Baumgartner, C.
    Koren, J.
    Herta, J.
    Gruber, A.
    Kluge, T.
    EPILEPSIA, 2014, 55 : 135 - 135
  • [8] One dimensional convolutional neural networks for seizure onset detection using long-term scalp and intracranial EEG
    Wang, Xiaoshuang
    Wang, Xiulin
    Liu, Wenya
    Chang, Zheng
    Karkkainen, Tommi
    Cong, Fengyu
    NEUROCOMPUTING, 2021, 459 : 212 - 222
  • [9] Automatic multimodal detection for long-term seizure documentation in epilepsy
    Fuerbass, F.
    Kampusch, S.
    Kaniusas, E.
    Koren, J.
    Pirker, S.
    Hopfengaertner, R.
    Stefan, H.
    Kluge, T.
    Baumgartner, C.
    CLINICAL NEUROPHYSIOLOGY, 2017, 128 (08) : 1466 - 1472
  • [10] Automatic Epileptic Seizure Prediction in Scalp EEG
    Mohan, Nirmal
    Shanir, Muhammed P. P.
    Sulthan, Noufal
    Sofiya, S.
    Khan, Kashif Ahmad
    2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CIRCUITS AND SYSTEMS (ICICS 2018), 2018, : 275 - 280