Anisotropic multilayer conductive networks in carbon nanotubes filled polyethylene/polypropylene blends obtained through high speed thin wall injection molding

被引:83
作者
Yu, Feilong [1 ]
Deng, Hua [1 ]
Zhang, Qin [1 ]
Wang, Ke [1 ]
Zhang, Chaoliang [2 ]
Chen, Feng [1 ]
Fu, Qiang [1 ]
机构
[1] Sichuan Univ, Coll Polymer Sci & Engn, State Key Lab Polymer Mat Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, State Key Lab Oral Dis, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Anisotropic conductive polymer composites; Thin-wall injection molding; Alternating multi-layered structure; ELECTROMAGNETIC-INTERFERENCE; ELECTRICAL-CONDUCTIVITY; SHIELDING EFFECTIVENESS; HIGH-STRENGTH; INTERFACIAL-TENSION; POLYMER COMPOSITES; VISCOSITY-RATIO; SHEAR-FLOW; MORPHOLOGY; NANOCOMPOSITES;
D O I
10.1016/j.polymer.2013.09.047
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
To prepare composites with anisotropic conductive networks, electrical conductive polymer composites (CPCs) consisting of polypropylene (PP) and carbon nanotubes (CNTs) filled polyethylene (PE) are fabricated through high speed thin-wall injection molding. Morphological study demonstrates that CNTs are localized in PE phase while the alternating multilayer structure with different polymer phases elongated as well as conductive network oriented parallel to flow direction is observed. To form such alternating layered structure, the dispersed phases are firstly deformed into discontinuous layers, and finally further deformed into wide and regular continuous alternating layers. In term of the mechanism behind this, the good viscosity match, low interfacial tension between different polymer components, short relaxation time and high shear rate are thought as important issues. The anisotropic conductive behavior of these CPCs, i.e. conductive in longitudinal (parallel to flow direction) and transverse (perpendicular to flow direction) direction but non-conductive in thickness direction, is contributed by the insulating PP layer which cuts off the conductive networks in the core layer. More importantly, much better electromagnetic interference (EMI) shielding ability is obtained for these CPCs with alternating multilayer conductive networks comparing with the same polymer blends with isotropic conductive networks, despite of the fact that much lower resistivity is obtained for the later. This indicates great potential of these anisotropic CPCs for electronic applications. Moreover, this study has shed some light on the potential use of such alternating multi-layered structure to prepare a range of multi-functional materials. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6425 / 6436
页数:12
相关论文
共 78 条
[1]   ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE [J].
AJAYAN, PM ;
STEPHAN, O ;
COLLIEX, C ;
TRAUTH, D .
SCIENCE, 1994, 265 (5176) :1212-1214
[2]   Electromagnetic interference shielding mechanisms of CNT/polymer composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (07) :1738-1746
[3]   Destruction and formation of a conductive carbon nanotube network in polymer melts:: In-line experiments [J].
Alig, Ingo ;
Lellinger, Dirk ;
Engel, Martin ;
Skipa, Tetyana ;
Poetschke, Petra .
POLYMER, 2008, 49 (07) :1902-1909
[4]   Conductivity spectroscopy on melt processed polypropylene-multiwalled carbon nanotube composites:: Recovery after shear and crystallization [J].
Alig, Ingo ;
Lellinger, Dirk ;
Dudkin, Sergej M. ;
Poetschke, Petra .
POLYMER, 2007, 48 (04) :1020-1029
[5]   Establishment, morphology and properties of carbon nanotube networks in polymer melts [J].
Alig, Ingo ;
Poetschke, Petra ;
Lellinger, Dirk ;
Skipa, Tetyana ;
Pegel, Sven ;
Kasaliwal, Gaurav R. ;
Villmow, Tobias .
POLYMER, 2012, 53 (01) :4-28
[6]   Morphology and phase inversion of EPDM/PP blends - Effect of viscosity and elasticity [J].
Antunes, C. F. ;
van Duin, M. ;
Machado, A. V. .
POLYMER TESTING, 2011, 30 (08) :907-915
[7]   Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites [J].
Arjmand, Mohammad ;
Apperley, Thomas ;
Okoniewski, Michal ;
Sundararaj, Uttandaraman .
CARBON, 2012, 50 (14) :5126-5134
[8]   Morphology, cocontinuity, and conductive properties of anisotropic polymer blends [J].
Arns, CH ;
Knackstedt, MA ;
Roberts, AP ;
Pinczewski, VW .
MACROMOLECULES, 1999, 32 (18) :5964-5966
[9]   EFFECT OF INTERFACIAL ENERGY AND VISCOSITY ON PERCOLATION TIME OF CARBON BLACK-FILLED POLY(METHYL METHACRYLATE) [J].
ASAI, S ;
SUMITA, M .
JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICS, 1995, B34 (03) :283-294
[10]   Recent Advances in Research on Carbon Nanotube-Polymer Composites [J].
Byrne, Michele T. ;
Gun'ko, Yurii K. .
ADVANCED MATERIALS, 2010, 22 (15) :1672-1688