MINKOWSKI PRODUCT OF CONVEX SETS AND PRODUCT NUMERICAL RANGE

被引:2
作者
Li, Chi-Kwong [1 ]
Pelejo, Diane Christine [1 ]
Poon, Yiu-Tung [2 ]
Wang, Kuo-Zhong [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
来源
OPERATORS AND MATRICES | 2016年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
Convex sets; Minkowski product; numerical range;
D O I
10.7153/oam-10-53
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-1, K-2 be two compact convex sets in C. Their Minkowski product is the set K1K2 = {ab : a is an element of K-1, b is an element of K-2}. We show that the set K1K2 is star-haped if K-1 is a line segment or a circular disk. Examples for K-1 and K-2 are given so that K-1 and K-2 are triangles (including interior) and K1K2 is not star-shaped. This gives a negative answer to a conjecture by Puchala et. al concerning the product numerical range in the study of quantum information science. Additional results and open problems are presented.
引用
收藏
页码:945 / 965
页数:21
相关论文
共 8 条
[1]  
ANDO T, 1973, ACTA SCI MATH, V34, P11
[2]   Numerical ranges and dilations [J].
Choi, MD ;
Li, CK .
LINEAR & MULTILINEAR ALGEBRA, 2000, 47 (01) :35-48
[3]  
Farouki R. T., 2002, Reliable Computing, V8, P43, DOI 10.1023/A:1014737602641
[4]   Minkowski geometric algebra of complex sets [J].
Farouki, RT ;
Moon, HP ;
Ravani, B .
GEOMETRIAE DEDICATA, 2001, 85 (1-3) :283-315
[5]  
Horn RA., 2013, MATRIX ANAL
[6]  
LI C. K., 1986, LINEAR MULTILINEAR A, V20, P5
[7]   PRODUCTS OF SETS OF COMPLEX NUMBERS [J].
MCALLISTER, BL .
TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (05) :390-397
[8]   Product numerical range in a space with tensor product structure [J].
Puchala, Zbigniew ;
Gawron, Piotr ;
Miszczak, Jaroslaw Adam ;
Skowronek, Lukasz ;
Choi, Man-Duen ;
Zyczkowski, Karol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) :327-342