An invariance principle for diffusion in turbulence

被引:29
作者
Fannjiang, A [1 ]
Komorowski, T
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] ETH Zentrum, Forschunginst Math, CH-8092 Zurich, Switzerland
关键词
diffusion; turbulence; invariance principle;
D O I
10.1214/aop/1022677385
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove an almost sure invariance principle for diffusion driven by velocities with unbounded stationary vector potentials. The result generalizes to multiple particles motion, driven by a common velocity field and independent molecular Brownian motions.
引用
收藏
页码:751 / 781
页数:31
相关论文
共 24 条
[1]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[2]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[3]  
Chorin A, 1994, Applied mathematical sciences, V103
[4]  
CHUNG K. L., 1995, From Brownian Motion to Schrodinger's Equation, V312
[5]   Diffusion in turbulence [J].
Fannjiang, A ;
Papanicolaou, G .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 105 (03) :279-334
[6]   A martingale approach to homogenization of unbounded random flows [J].
Fannjiang, A ;
Komorowski, T .
ANNALS OF PROBABILITY, 1997, 25 (04) :1872-1894
[7]  
FANNJIANG CA, 1998, MATH MULTISCALE MAT
[8]  
Frisch U., 1996, TURBULENCE
[9]  
HELLAND IS, 1982, SCAND J STAT, V9, P79
[10]   ANOMALOUS DIFFUSION DUE TO LONG-RANGE VELOCITY FLUCTUATIONS IN THE ABSENCE OF A MEAN FLOW [J].
KOCH, DL ;
BRADY, JF .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (01) :47-51