Silicon-based high-power traveling wave photodetector with inductive gain peaking

被引:6
作者
Wei, Zhujun [1 ]
Yu, Hui [1 ,2 ]
Fu, Zhilei [1 ]
Xia, Penghui [1 ]
Zhang, Qiang [2 ]
Ning, Nannan [1 ]
Huang, Qikai [1 ]
Wang, Yuehai [1 ]
Yang, Jianyi [1 ]
机构
[1] Zhejiang Univ, Inst Integrated Microelect Syst, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Lab, Hangzhou 311121, Peoples R China
关键词
HIGH-SPEED; GERMANIUM PHOTODETECTOR; PERFORMANCE; PHOTODIODE; PHOTONICS; COUPLER; DESIGN;
D O I
10.1364/OE.476218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate Ge/Si high-power and high-speed distributed traveling wave pho-todetectors (TWPD) by using the inductive gain peaking technique. Input terminals of TW electrodes are open to enhance RF output efficiencies to output loads. Furthermore, optimized on-chip spiral inductors are incorporated at output terminals of TW electrodes to alleviate bandwidth degradations caused by the absences of matching impedances. A comprehensive equivalent circuit model is developed to calculate the frequency response of this scheme. It is used to optimize the design, and then is validated by measurement results. After inducing on-chip inductors, the bandwidths of 4-stage and 8-stage TWPDs are improved from 32 to 44 GHz and 16 to 24 GHz, respectively. Maximum RF output powers of 4-stage and 8-stage TWPDs with on-chip inductors are measured to be 5.7 dBm and 9.4 dBm at 20 GHz, respectively.
引用
收藏
页码:46094 / 46105
页数:12
相关论文
共 50 条
[31]   ∞-Shaped (Lemniscatical) Helix Slow-Wave Structure (LH-SWS) for High-Power Traveling-Wave Tubes [J].
Gholamrezaei, Mohsen ;
Hamidi, Emad ;
Kashani, Farokh Hodjat .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) :2607-2613
[32]   Vertical Engineering for Large Brillouin Gain in Unreleased Silicon-Based Waveguides [J].
Mercade, Laura ;
Korovin, Alexander V. ;
Pennec, Yan ;
Ahopelto, Jouni ;
Djafari-Rouhani, Bahram ;
Martinez, Alejandro .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)
[33]   High-power photodetector module for 0–16 GHz frequency range [J].
Arykov V.S. ;
Yunusov I.V. ;
Stepanenko M.V. ;
Zhuravlev K.S. ;
Gilinsky A.M. ;
Chistokhin I.B. ;
Aksenov M.S. ;
Dmitriev D.V. .
Applied Physics, 2023, (01) :38-43
[34]   A peak enhancement of frequency response of waveguide integrated silicon-based germanium avalanche photodetector [J].
Yi, Linkai ;
Liu, Daoqun ;
Cheng, Wenzheng ;
Li, Daimo ;
Zhou, Guoqi ;
Zhang, Peng ;
Tang, Bo ;
Li, Bin ;
Wang, Wenwu ;
Yang, Yan ;
Li, Zhihua .
JOURNAL OF SEMICONDUCTORS, 2024, 45 (07)
[35]   Silicon-based microscale-oscillating heat pipes for high power and high heat flux operation [J].
Qian, Qian ;
Zhang, Xin ;
Tian, Shurong ;
Yao, Bojing ;
Weibel, Justin A. ;
Pan, Liang .
APPLIED PHYSICS LETTERS, 2024, 125 (02)
[36]   A broadband GaAs high power millimeter wave amplifier with high gain and flatness [J].
Chen, Yang ;
Xu, Yuehang ;
Quan, Jinhai ;
Tong, Wei ;
Xu, Ruimin .
IEICE ELECTRONICS EXPRESS, 2018, 15 (10)
[37]   Comparative Study of Collectors for High-Power Gridless Inductive Output Tube [J].
Nadeem, Muhammad Khawar ;
Wang, Shaomeng ;
Ali, Bilawal ;
Latif, Jibran ;
Gong, Yubin .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (10) :5054-5061
[38]   Electrooptic Silicon-Based Modulator for Short-Wave Infrared [J].
Rouifed, M-Said ;
Littlejohns, Callum G. ;
Guo, Tina X. ;
Wang, Wanjun ;
Thomson, David J. ;
Reed, Graham T. ;
Wang, Hong .
OPTICS, PHOTONICS AND LASERS, 2018, :143-144
[39]   Modular Parallel Multi-Inverter System for High-Power Inductive Power Transfer [J].
Deng, Qijun ;
Sun, Pan ;
Hu, Wenshan ;
Czarkowski, Dariusz ;
Kazimierczuk, Marian K. ;
Zhou, Hong .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (10) :9422-9434
[40]   Modularized Inductive Power Transfer Systems With Inherent Impedance Decoupling for High-Power Applications [J].
Hu, Hongsheng ;
Su, Jingyuan ;
Chen, Fengwei ;
Sun, Yue .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (02) :1492-1502