GPU-parallel performance of the community radiative transfer model (CRTM) with the optical depth in absorber space (ODAS)-based transmittance algorithm

被引:0
作者
Mielikainen, Jarno [1 ]
Huang, Bormin [1 ]
Huang, Hung-Lung Allen [1 ]
Lee, Tsengdar [2 ]
机构
[1] Univ Wisconsin Madison, Ctr Space Sci & Engn, Madison, WI 53706 USA
[2] BNASA Headquarters, Washington, DC 20546 USA
来源
HIGH-PERFORMANCE COMPUTING IN REMOTE SENSING II | 2012年 / 8539卷
基金
美国国家航空航天局;
关键词
radiative transfer; parallel computing; GPU; CUDA; ATMOSPHERIC TRANSMITTANCE; COHERENCE TOMOGRAPHY; GAS; IMPROVEMENTS;
D O I
10.1117/12.979077
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An Atmospheric radiative transfer model calculates radiative transfer of electromagnetic radiation through earth's atmosphere. The Community Radiative Transfer Model (CRTM) is a fast model for simulating the infrared (IR) and microwave (MW) radiances of a given state of the Earth's atmosphere and its surface. The CRTM radiances have been used for satellite data assimilation in numerical weather prediction. The CRTM takes into account the radiance emission and absorption of various atmospheric gaseous as well as the emission and the reflection of various surface types. Two different transmittance algorithms are currently available in the CRTM OPTRAN: Optical Depth in Absorber Space (ODAS) and Optical Depth in Pressure Space (ODPS). ODAS in the current CRTM allows two variable absorbers (water vapor and ozone). In this paper, we examine the feasibility of using graphics processing units (GPUs) to accelerate the CRTM with the ODAS transmittance model. Using commodity GPUs for accelerating CRTM means that the hardware cost of adding high performance accelerators to computation hardware configuration are significantly reduced. Our results show that GPUs can provide significant speedup over conventional processors for the 8461-channel IASI sounder. In particular, a GPU on the dual-GPU NVIDIA GTX 590 card can provide a speedup 339x for the single-precision version of the CRTM ODAS compared to its single-threaded Fortran counterpart running on Intel i7 920 CPU.
引用
收藏
页数:9
相关论文
共 16 条
  • [1] Computer generated hologram with geometric occlusion using GPU-accelerated depth buffer rasterization for three-dimensional display
    Chen, Rick H. -Y.
    Wilkinson, Timothy D.
    [J]. APPLIED OPTICS, 2009, 48 (21) : 4246 - 4255
  • [2] Han Y., 2005, 122 NOAA
  • [3] Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI)
    Huang, Bormin
    Mielikainen, Jarno
    Oh, Hyunjong
    Huang, Hung-Lung Allen
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (06) : 2207 - 2221
  • [4] Acceleration method of computing a compensated phase-added stereogram on a graphic processing unit
    Kang, Hoonjong
    Yamaguchi, Takeshi
    Yoshikawa, Hiroshi
    Kim, Seung-Cheol
    Kim, Eun-Soo
    [J]. APPLIED OPTICS, 2008, 47 (31) : 5784 - 5789
  • [5] Graphics processing unit accelerated computation of digital holograms
    Kang, Hoonjong
    Yaras, Fahri
    Onural, Levent
    [J]. APPLIED OPTICS, 2009, 48 (34) : H137 - H143
  • [6] Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model
    Kleespies, TJ
    van Delst, P
    McMillin, LM
    Derber, J
    [J]. APPLIED OPTICS, 2004, 43 (15) : 3103 - 3109
  • [7] Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units
    Li, Jian
    Bloch, Pavel
    Xu, Jing
    Sarunic, Marinko V.
    Shannon, Lesley
    [J]. APPLIED OPTICS, 2011, 50 (13) : 1832 - 1838
  • [8] Atmospheric wavefront phase recovery by use of specialized hardware:: graphical processing units and field-programmable gate arrays
    Marichal-Hernández, JG
    Rodríguez-Ramos, LF
    Rosa, F
    Rodríguez-Ramos, JM
    [J]. APPLIED OPTICS, 2005, 44 (35) : 7587 - 7594
  • [9] Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN 6 approach
    McMillin, LM
    Xiong, XZ
    Han, Y
    Kleespies, TJ
    Van Delst, P
    [J]. APPLIED OPTICS, 2006, 45 (09) : 2028 - 2034
  • [10] Atmospheric transmittance of an absorbing gas .5. Improvements to the OPTRAN approach
    McMillin, LM
    Crone, LJ
    Kleespies, TJ
    [J]. APPLIED OPTICS, 1995, 34 (36): : 8396 - 8399