Resonance and stochastic layer in a parametrically excited pendulum

被引:12
|
作者
Luo, ACJ [1 ]
机构
[1] So Illinois Univ, Dept Mech & Ind Engn, Edwardsville, IL 62026 USA
关键词
parametrically excited pendulum; stochastic layer; resonance; energy spectrum;
D O I
10.1023/A:1012996229150
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The (2M:1)-librational and (M:1)-rotational resonances are discovered in the stochastic layer of a parametrically excited pendulum. The analytical conditions for the onset of a resonance in the stochastic layer are derived. Numerical predictions of the appearance of resonance in the stochastic layer are also completed. Illustrations of the stochastic layer in the parametrically excited pendulums are given through the Poincare mapping sections. This methodology can be used for resonant layers in nonlinear Hamiltonian systems. However, the analytical approaches need to be improved for the better predictions of the resonant characteristics in the stochastic layer.
引用
收藏
页码:355 / 367
页数:13
相关论文
共 50 条
  • [1] Resonance and Stochastic Layer in a Parametrically Excited Pendulum
    Albert C. J. Luo
    Nonlinear Dynamics, 2001, 25 : 355 - 367
  • [2] Stochastic dynamics of a parametrically base excited rotating pendulum
    Yurchenko, Daniil
    Alevras, Panagiotis
    IUTAM SYMPOSIUM ON MULTISCALE PROBLEMS IN STOCHASTIC MECHANICS, 2013, 6 : 160 - 168
  • [3] On the stochastic resonance phenomenon in parametrically excited systems
    Sorokin, Vladislav
    Blekhman, Iliya
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (05) : 986 - 1003
  • [4] Control of the parametrically excited pendulum
    Bishop, SR
    Xu, DL
    IUTAM SYMPOSIUM ON INTERACTION BETWEEN DYNAMICS AND CONTROL IN ADVANCED MECHANICAL SYSTEMS, 1997, 52 : 43 - 50
  • [5] Rotating solutions of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    JOURNAL OF SOUND AND VIBRATION, 2003, 263 (01) : 233 - 239
  • [6] Breaking the symmetry of the parametrically excited pendulum
    Sofroniou, A
    Bishop, SR
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 673 - 681
  • [7] A parametrically excited pendulum with irrational nonlinearity
    Han, Ning
    Cao, Qingjie
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2017, 88 : 122 - 134
  • [8] Dynamics of a parametrically excited simple pendulum
    Depetri, Gabriela I.
    Pereira, Felipe A. C.
    Marin, Boris
    Baptista, Murilo S.
    Sartorelli, J. C.
    CHAOS, 2018, 28 (03)
  • [9] The parametrically excited multi-pendulum
    Sharp, RS
    MULTIBODY SYSTEM DYNAMICS, 2001, 5 (03) : 303 - 313
  • [10] Flexible control of the parametrically excited pendulum
    Bishop, SR
    Xu, DL
    Clifford, MJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1951): : 1789 - 1806