Modifying the electrical properties of graphene by reversible point-ripple formation

被引:18
作者
Alyobi, Mona M. M. [1 ,3 ]
Barnett, Chris J. [1 ]
Rees, Paul [1 ]
Cobley, Richard J. [1 ,2 ]
机构
[1] Swansea Univ, Coll Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
[2] Swansea Univ, Ctr Nanohlth, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[3] Taibah Univ, Coll Sci, Univ Rd,Medina POB 344, Medina, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
CHEMICAL-VAPOR-DEPOSITION; FEW-LAYER GRAPHENE; RAMAN-SPECTROSCOPY; SCATTERING; TRANSPORT; FILMS;
D O I
10.1016/j.carbon.2018.11.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain, ripples and wrinkles in graphene reduce the charge-carrier mobility and alter the electronic behaviour. In few-layer graphene the anisotropy between the in-plane and cross-plane resistivity is altered and a band gap can be opened up. Here we demonstrate a method to reversibly induce point ripples in electrically isolated few-layer graphene with the ability to select the number of layers used for transport measurement down to single layer. During ripple formation the in-plane and cross-plane sheet resistances increase by up to 78% and 699% respectively, confirming that microscopic corrugation changes can solely account for graphene's non-ideal charge-carrier mobility. The method can also count the number of layers in few-layer graphene and is complimentary to Raman spectroscopy and atomic force microscopy when n <= 4. Understanding these changes is crucial to realising practical oscillators, nano-electromechanical systems and flexible electronics with graphene. (C) 2018 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:762 / 768
页数:7
相关论文
共 58 条
[1]   Effects of Thermal Annealing on the Properties of Mechanically Exfoliated Suspended and On-Substrate Few-Layer Graphene [J].
Alyobi, Mona M. M. ;
Barnett, Chris J. ;
Cobley, Richard J. .
CRYSTALS, 2017, 7 (11)
[2]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[3]  
Arnhild J., 2010, NEW J PHYS, V12
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[5]   Creating One-Dimensional Nanoscale Periodic Ripples in a Continuous Mosaic Graphene Monolayer [J].
Bai, Ke-Ke ;
Zhou, Yu ;
Zheng, Hong ;
Meng, Lan ;
Peng, Hailin ;
Liu, Zhongfan ;
Nie, Jia-Cai ;
He, Lin .
PHYSICAL REVIEW LETTERS, 2014, 113 (08)
[6]   The effects of surface stripping ZnO nanorods with argon bombardment [J].
Barnett, Chris J. ;
Kryvchenkova, Olga ;
Smith, Nathan A. ;
Kelleher, Liam ;
Maffeis, Thierry G. G. ;
Cobley, Richard J. .
NANOTECHNOLOGY, 2015, 26 (41)
[7]   Effects of Vacuum Annealing on the Conduction Characteristics of ZnO Nanosheets [J].
Barnett, Chris J. ;
Smith, Nathan A. ;
Jones, Daniel R. ;
Maffeis, Thierry G. G. ;
Cobley, Richard J. .
NANOSCALE RESEARCH LETTERS, 2015, 10
[8]   Mapping the electrical properties of large-area graphene [J].
Boggild, Peter ;
Mackenzie, David M. A. ;
Whelan, Patrick R. ;
Petersen, Dirch H. ;
Buron, Jonas Due ;
Zurutuza, Amaia ;
Gallop, John ;
Hao, Ling ;
Jepsen, Peter U. .
2D MATERIALS, 2017, 4 (04)
[9]   Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC [J].
Brar, Victor W. ;
Zhang, Yuanbo ;
Yayon, Yossi ;
Ohta, Taisuke ;
McChesney, Jessica L. ;
Bostwick, Aaron ;
Rotenberg, Eli ;
Horn, Karsten ;
Crommie, Michael F. .
APPLIED PHYSICS LETTERS, 2007, 91 (12)
[10]   Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip [J].
Breitwieser, Romain ;
Hu, Yu-Cheng ;
Chao, Yen Cheng ;
Li, Ren-Jie ;
Tzeng, Yi Ren ;
Li, Lain-Jong ;
Liou, Sz-Chian ;
Lin, Keng Ching ;
Chen, Chih Wei ;
Pai, Woei Wu .
CARBON, 2014, 77 :236-243