Simulating variance heterogeneity in quantitative genome wide association studies

被引:4
作者
Al Kawam, Ahmad [1 ,2 ,3 ]
Alshawaqfeh, Mustafa [4 ]
Cai, James J. [2 ]
Serpedin, Erchin [1 ]
Datta, Aniruddha [1 ,3 ]
机构
[1] Texas A&M Univ, Elect & Comp Engn Dept, College Stn, TX 77843 USA
[2] Texas A&M Univ, Vet Integrat Biosci Dept, College Stn, TX 77843 USA
[3] Texas A&M Univ, TEES AgriLife Ctr Bioinformat & Genom Syst Engn C, College Stn, TX 77843 USA
[4] German Jordanian Univ, Elect & Comp Engn Dept, Amman, Jordan
来源
BMC BIOINFORMATICS | 2018年 / 19卷
关键词
Variance heterogeneity; Genome wide association studies; GWAS simulation; PHENOTYPIC VARIABILITY; LOCI; HERITABILITY;
D O I
10.1186/s12859-018-2061-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Analyzing Variance heterogeneity in genome wide association studies (vGWAS) is an emerging approach for detecting genetic loci involved in gene-gene and gene-environment interactions. vGWAS analysis detects variability in phenotype values across genotypes, as opposed to typical GWAS analysis, which detects variations in the mean phenotype value. Results: A handful of vGWAS analysis methods have been recently introduced in the literature. However, very little work has been done for evaluating these methods. To enable the development of better vGWAS analysis methods, this work presents the first quantitative vGWAS simulation procedure. To that end, we describe the mathematical framework and algorithm for generating quantitative vGWAS phenotype data from genotype profiles. Our simulation model accounts for both haploid and diploid genotypes under different modes of dominance. Our model is also able to simulate any number of genetic loci causing mean and variance heterogeneity. Conclusions: We demonstrate the utility of our simulation procedure through generating a variety of genetic loci types to evaluate common GWAS and vGWAS analysis methods. The results of this evaluation highlight the challenges current tools face in detecting GWAS and vGWAS loci.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J].
Atwell, Susanna ;
Huang, Yu S. ;
Vilhjalmsson, Bjarni J. ;
Willems, Glenda ;
Horton, Matthew ;
Li, Yan ;
Meng, Dazhe ;
Platt, Alexander ;
Tarone, Aaron M. ;
Hu, Tina T. ;
Jiang, Rong ;
Muliyati, N. Wayan ;
Zhang, Xu ;
Amer, Muhammad Ali ;
Baxter, Ivan ;
Brachi, Benjamin ;
Chory, Joanne ;
Dean, Caroline ;
Debieu, Marilyne ;
de Meaux, Juliette ;
Ecker, Joseph R. ;
Faure, Nathalie ;
Kniskern, Joel M. ;
Jones, Jonathan D. G. ;
Michael, Todd ;
Nemri, Adnane ;
Roux, Fabrice ;
Salt, David E. ;
Tang, Chunlao ;
Todesco, Marco ;
Traw, M. Brian ;
Weigel, Detlef ;
Marjoram, Paul ;
Borevitz, Justin O. ;
Bergelson, Joy ;
Nordborg, Magnus .
NATURE, 2010, 465 (7298) :627-631
[2]   GENOMEPOP:: A program to simulate genomes in populations [J].
Carvajal-Rodriguez, Antonio .
BMC BIOINFORMATICS, 2008, 9 (1)
[3]   phenosim - A software to simulate phenotypes for testing in genome-wide association studies [J].
Guenther, Torsten ;
Gawenda, Inka ;
Schmid, Karl J. .
BMC BIOINFORMATICS, 2011, 12
[4]   SLiM 2: Flexible, Interactive Forward Genetic Simulations [J].
Haller, Benjamin C. ;
Messer, Philipp W. .
MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (01) :230-240
[5]   Potential etiologic and functional implications of genome-wide association loci for human diseases and traits [J].
Hindorff, Lucia A. ;
Sethupathy, Praveen ;
Junkins, Heather A. ;
Ramos, Erin M. ;
Mehta, Jayashri P. ;
Collins, Francis S. ;
Manolio, Teri A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (23) :9362-9367
[6]   Generating samples under a Wright-Fisher neutral model of genetic variation [J].
Hudson, RR .
BIOINFORMATICS, 2002, 18 (02) :337-338
[7]  
Hui W, 2008, J STAT SOFTW, V28, P1
[8]   Genetic Variants Contribute to Gene Expression Variability in Humans [J].
Hulse, Amanda M. ;
Cai, James J. .
GENETICS, 2013, 193 (01) :95-108
[9]   Recombination and linkage disequilibrium in Arabidopsis thaliana [J].
Kim, Sung ;
Plagnol, Vincent ;
Hu, Tina T. ;
Toomajian, Christopher ;
Clark, Richard M. ;
Ossowski, Stephan ;
Ecker, Joseph R. ;
Weigel, Detlef ;
Nordborg, Magnus .
NATURE GENETICS, 2007, 39 (09) :1151-1155
[10]   The advantages and limitations of trait analysis with GWAS: a review [J].
Korte, Arthur ;
Farlow, Ashley .
PLANT METHODS, 2013, 9