On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data

被引:324
作者
Welvaert, Marijke [1 ]
Rosseel, Yves [1 ]
机构
[1] Univ Ghent, Dept Data Anal, B-9000 Ghent, Belgium
来源
PLOS ONE | 2013年 / 8卷 / 11期
关键词
INDEPENDENT COMPONENT ANALYSIS; HEMODYNAMIC-RESPONSE FUNCTION; PHYSIOLOGICAL NOISE; FUNCTIONAL CONNECTIVITY; SPATIAL ICA; RESOLUTION; MOTION; MRI; SENSITIVITY; ENTROPY;
D O I
10.1371/journal.pone.0077089
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Signal-to-noise ratio, the ratio between signal and noise, is a quantity that has been well established for MRI data but is still subject of ongoing debate and confusion when it comes to fMRI data. fMRI data are characterised by small activation fluctuations in a background of noise. Depending on how the signal of interest and the noise are identified, signal-to-noise ratio for fMRI data is reported by using many different definitions. Since each definition comes with a different scale, interpreting and comparing signal-to-noise ratio values for fMRI data can be a very challenging job. In this paper, we provide an overview of existing definitions. Further, the relationship with activation detection power is investigated. Reference tables and conversion formulae are provided to facilitate comparability between fMRI studies.
引用
收藏
页数:10
相关论文
共 62 条
[11]   Microbleeds, lacunar infarcts, white matter lesions and cerebrovascular reactivity - A 7 T study [J].
Conijn, Mandy M. A. ;
Hoogduin, Johannes M. ;
van der Graaf, Yolanda ;
Hendrikse, Jeroen ;
Luijten, Peter R. ;
Geerlings, Mirjam I. .
NEUROIMAGE, 2012, 59 (02) :950-956
[12]   Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns [J].
De Martino, Federico ;
Valente, Giancarlo ;
Staeren, Noel ;
Ashburner, John ;
Goebel, Rainer ;
Formisano, Elia .
NEUROIMAGE, 2008, 43 (01) :44-58
[13]   fMRI bold signal analysis using a novel nonparametric statistical method [J].
De Maziere, Patrick A. ;
Van Hulle, Marc M. .
JOURNAL OF MAGNETIC RESONANCE, 2007, 185 (01) :138-151
[14]   Likelihood-Based Hypothesis Tests for Brain Activation Detection From MRI Data Disturbed by Colored Noise: A Simulation Study [J].
den Dekker, A. J. ;
Poot, D. H. J. ;
Bos, R. ;
Sijbers, J. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (02) :287-296
[15]   Calibrated BOLD using direct measurement of changes in venous oxygenation [J].
Driver, Ian D. ;
Hall, Emma L. ;
Wharton, Samuel J. ;
Pritchard, Susan E. ;
Francis, Susan T. ;
Gowland, Penny A. .
NEUROIMAGE, 2012, 63 (03) :1178-1187
[16]   The future of ultra-high field MRI and fMRI for study of the human brain [J].
Duyn, Jeff H. .
NEUROIMAGE, 2012, 62 (02) :1241-1248
[17]   THE INTRINSIC SIGNAL-TO-NOISE RATIO IN NMR IMAGING [J].
EDELSTEIN, WA ;
GLOVER, GH ;
HARDY, CJ ;
REDINGTON, RW .
MAGNETIC RESONANCE IN MEDICINE, 1986, 3 (04) :604-618
[18]   Extracting functional networks with spatial independent component analysis: the role of dimensionality, reliability and aggregation scheme [J].
Esposito, Fabrizio ;
Goebel, Rainer .
CURRENT OPINION IN NEUROLOGY, 2011, 24 (04) :378-385
[19]   Dynamic causal modelling [J].
Friston, KJ ;
Harrison, L ;
Penny, W .
NEUROIMAGE, 2003, 19 (04) :1273-1302
[20]   THE RICIAN DISTRIBUTION OF NOISY MRI DATA [J].
GUDBJARTSSON, H ;
PATZ, S .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) :910-914