Bayesian computing with INLA: New features

被引:405
作者
Martins, Thiago G. [1 ]
Simpson, Daniel [1 ]
Lindgren, Finn [1 ]
Rue, Havard [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Approximate Bayesian inference; INLA; Latent Gaussian models; NESTED LAPLACE APPROXIMATIONS; LATENT GAUSSIAN MODELS; LINEAR MIXED MODELS; INFERENCE; INFECTIONS;
D O I
10.1016/j.csda.2013.04.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The INLA approach for approximate Bayesian inference for latent Gaussian models has been shown to give fast and accurate estimates of posterior marginals and also to be a valuable tool in practice via the R-package R-INLA. New developments in the R-INLA are formalized and it is shown how these features greatly extend the scope of models that can be analyzed by this interface. The current default method in R-INLA to approximate the posterior marginals of the hyperparameters using only a modest number of evaluations of the joint posterior distribution of the hyperparameters, without any need for numerical integration, is discussed. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 83
页数:16
相关论文
共 32 条
[1]   Evaluation of Spatial Relationships between Health and the Environment: The Rapid Inquiry Facility [J].
Beale, Linda ;
Hodgson, Susan ;
Jose Abellan, Juan ;
LeFevre, Sam ;
Jarup, Lars .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2010, 118 (09) :1306-1312
[2]   Geographic determinants of reported human Campylobacter infections in Scotland [J].
Bessell, Paul R. ;
Matthews, Louise ;
Smith-Palmer, Alison ;
Rotariu, Ovidiu ;
Strachan, Norval J. C. ;
Forbes, Ken J. ;
Cowden, John M. ;
Reid, Stuart W. J. ;
Innocent, Giles T. .
BMC PUBLIC HEALTH, 2010, 10
[3]  
Cameletti M., 2012, STAT ANAL, V97, P109
[4]  
Cseke B, 2011, J MACH LEARN RES, V12, P417
[5]   Geostatistical inference under preferential sampling [J].
Diggle, Peter J. ;
Menezes, Raquel ;
Su, Ting-li .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2010, 59 :191-232
[6]  
Eidsvik J., 2011, COMPUTATIONAL STAT D
[7]   Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models [J].
Eidsvik, Jo ;
Martino, Sara ;
Rue, Havard .
SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (01) :1-22
[8]   Bayesian inference for generalized linear mixed models [J].
Fong, Youyi ;
Rue, Havard ;
Wakefield, Jon .
BIOSTATISTICS, 2010, 11 (03) :397-412
[9]   Separate and joint modeling of longitudinal and event time data using standard computer packages [J].
Guo, X ;
Carlin, BP .
AMERICAN STATISTICIAN, 2004, 58 (01) :16-24
[10]  
Haas S., 2011, ECOLOGY LETT