Chitosan-Coating Deposition via Galvanic Coupling

被引:18
作者
Blanda, Giuseppe [1 ]
Brucato, Valerio [1 ,3 ]
Carfi, Francesco [1 ,2 ]
Conoscenti, Gioacchino [3 ]
La Carrubba, Vincenzo [1 ,2 ,3 ]
Piazza, Salvatore [1 ]
Sunseri, Carmelo [1 ]
Inguanta, Rosalinda [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn, Viale Sci, I-90128 Palermo, Italy
[2] Univ Palermo, ATeN Ctr, Viale Sci, I-90128 Palermo, Italy
[3] INSTM Palermo Res Unit, Viale Sci, I-90128 Palermo, Italy
关键词
chitosan; 304SS stainless steel; galvanic deposition; biocoatings; cytotoxicity; medical devices biomaterial; IN-VITRO CORROSION; BRUSHITE/HYDROXYAPATITE COATINGS; ELECTROPHORETIC DEPOSITION; PH CHANGES; ELECTRODEPOSITION; BIOCOMPATIBILITY; IMPLANTS; DEGRADATION; REDUCTION; NANOTUBES;
D O I
10.1021/acsbiomaterials.8b01548
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A galvanic method to deposit chitosan coatings on stainless steel substrate is reported. Deposition of suitable coatings is desired to improve biocompatibility and corrosion resistance of metallic medical devices to be implanted in human body. In the present work, a thin hydrogel layer of chitosan was deposited on 304SS by a galvanic displacement reaction, which is advantageous first as it does not require external power supply. 304SS was immersed into an aqueous solution of chitosan/lactic acid and electrochemically coupled with magnesium acting as a sacrificial anode. SEM images showed the formation of a uniform layer of chitosan with a thickness controlled by deposition time. Corrosion tests in simulating body fluid showed that chitosan coatings shift the corrosion potential of 304 substrates toward nobler values. Finally, the cytotoxicity of the coating was investigated through cell viability assays with osteoblastic cell MC3T3-E1. The results revealed highly satisfying biocompatibility of the coating.
引用
收藏
页码:1715 / +
页数:19
相关论文
共 59 条
[1]  
Abdeen Z., 2014, Open Journal of Organic Polymer Materials, V04, P16, DOI [10.4236/ojopm.2014.41004, DOI 10.4236/OJOPM.2014.41004]
[2]   Morphology tuning of chitosan films via electrochemical deposition [J].
Altomare, Lina ;
Draghi, Lorenza ;
Chiesa, Roberto ;
De Nardo, Luigi .
MATERIALS LETTERS, 2012, 78 :18-21
[3]  
[Anonymous], 2007, POWDER DIFFRACTION F
[4]   Amorphous silicon nanotubes via galvanic displacement deposition [J].
Battaglia, Mirko ;
Piazza, Salvatore ;
Sunseri, Carmelo ;
Inguanta, Rosalinda .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 :134-137
[5]   In Vitro Corrosion and Biocompatibility of Brushite/Hydroxyapatite Coatings Obtained by Galvanic Deposition on 316LSS [J].
Blanda, Giuseppe ;
Brucato, Valerio ;
Pavia, Francesco Carfi ;
Greco, Silvia ;
Piazza, Salvatore ;
Sunseri, Carmelo ;
Inguanta, Rosalinda .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) :G1-G10
[6]   Galvanic deposition and characterization of brushite/hydroxyapatite coatings on 316L stainless steel [J].
Blanda, Giuseppe ;
Brucato, Valerio ;
Pavia, Francesco Carfi ;
Greco, Silvia ;
Piazza, Salvatore ;
Sunseri, Carmelo ;
Inguanta, Rosalinda .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 64 :93-101
[7]   Simulation of interfacial pH changes during hydrogen evolution reaction [J].
Carneiro-Neto, Evaldo B. ;
Lopes, Mauro C. ;
Pereira, Ernesto C. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 765 :92-99
[8]   Characterization of the cathodic electrodeposition of semicrystalline chitosan hydrogel [J].
Cheng, Yi ;
Gray, Kelsey M. ;
David, Laurent ;
Royaud, Isabelle ;
Payne, Gregory F. ;
Rubloff, Gary W. .
MATERIALS LETTERS, 2012, 87 :97-100
[9]   Electrophoretic deposition of chitosan/Bioglass® and chitosan/Bioglass®/TiO2 composite coatings for bioimplants [J].
Clavijo, Silvia ;
Membrives, Francisco ;
Quiroga, Gisela ;
Boccaccini, Aldo R. ;
Santillan, Maria J. .
CERAMICS INTERNATIONAL, 2016, 42 (12) :14206-14213
[10]   Nanostructured Anode Material for Li-Ion Battery Obtained by Galvanic Process [J].
Cocchiara, Cristina ;
Inguanta, Rosalinda ;
Piazza, Salvatore ;
Sunseri, Carmelo .
INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY BASED INNOVATIVE APPLICATIONS FOR THE ENVIRONMENT, 2016, 47 :73-78