Calculating the lift on a finite stack of cylindrical aerofoils

被引:38
作者
Crowdy, D [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2006年 / 462卷 / 2069期
关键词
multiple aerofoils; lift; Kutta-Joukowski; Schottky; klein;
D O I
10.1098/rspa.2005.1631
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The classic exact solution due to Lagally (Lagally, A 1929 Die reibungslose stromung im aussengebiet zweier kreise. Z. Angew. Math. Mech. 9, 299-305.) for streaming flow past two cylindrical aerofoils (or obstacles) is generalized to the case of an arbitrary finite number of cylindrical aerofoils. Given the geometry of the aerofoils, the speed and direction of the oncoming uniform flow and the individual round-aerofoil circulations, the complex potential associated with the flow is found in analytical form in a parametric pre-image region that can be conformally mapped to the fluid region. A complete determination of the flow then follows from knowledge of the conformal mapping between the two regions. In the special case where the aerofoils are all circular, the conformal mapping from the parametric pre-image region to the fluid domain is a Mobius mapping. The solution for the complex potential in such a case can then be used, in combination with the Blasius theorem, to compute the distribution of hydrodynamic forces on the multi-aerofoil configuration.
引用
收藏
页码:1387 / 1407
页数:21
相关论文
共 22 条
[11]   The motion of a vortex near two circular cylinders [J].
Johnson, ER ;
McDonald, NR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2044) :939-954
[12]   The frictionless current in the outer areas of double circuits [J].
Lagally, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1929, 9 :299-305
[14]  
Milne-Thomson LM., 1962, Theoretical hydrodynamics, V4th edn
[15]  
MUNK MM, 1927, 256 NACA
[16]  
Nehari Z., 1952, Conformal Mappings
[17]  
Robinson A., 1956, Wing Theory
[18]  
THEODORSSEN T, 1933, 452 NACA
[19]  
THEODORSSEN T, 1932, 411 NACA
[20]   Interaction of two circular cylinders in inviscid fluid [J].
Wang, QX .
PHYSICS OF FLUIDS, 2004, 16 (12) :4412-4425