Multiple operator integrals and higher operator derivatives

被引:65
作者
Peller, VV [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
multiple operator integrals; operator derivatives; Besov classes; Schur multipliers; unitary operators; self-adjoint operators;
D O I
10.1016/j.jfa.2005.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of the existence of higher derivatives of the function t -> phi(A + tK), where phi is a function on the real line, A is a self-adjoint operator, and K is a bounded self-adjoint operator. We improve earlier results by Sten'kin. In order to do this, we give a new approach to multiple operator integrals. This approach improves the earlier approach given by Sten'kin. We also consider a similar problem for unitary operators. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:515 / 544
页数:30
相关论文
共 19 条
  • [1] [Anonymous], 1972, ZAP NAUCN SEM LENING
  • [2] [Anonymous], PROBLEMS MATH ANAL
  • [3] ARAZY J, 1990, INTEGR EQUAT OPER TH, V13, P462
  • [4] SCHUR MULTIPLIERS
    BENNETT, G
    [J]. DUKE MATHEMATICAL JOURNAL, 1977, 44 (03) : 603 - 639
  • [5] Birman, 1968, TOPICS MATH PHYS, V2, P19
  • [6] Birman M.S., 1967, PROBLEMY MAT FIZ, V1, P33
  • [7] Birman M. Sh., 1967, TOPICS MATH PHYS, V1, P25
  • [8] Double operator integrals in a Hilbert space
    Birman, MS
    Solomyak, M
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 47 (02) : 131 - 168
  • [9] BIRMAN MS, 1973, PROBLEMS MATH PHYSIC, V6, P27
  • [10] DALETSKII YL, 1956, T SEM FUNKTSION ANAL, V1, P81