Inverse Problems for a Generalized Subdiffusion Equation with Final Overdetermination

被引:46
作者
Kinash, Nataliia [1 ]
Janno, Jaan [1 ]
机构
[1] Tallinn Univ Technol, Dept Cybernet, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
inverse problem; subdiffusion; final overdetermination; fractional diffusion; TIME-FRACTIONAL DIFFUSION; INTEGRODIFFERENTIAL EQUATIONS; PRINCIPLE;
D O I
10.3846/mma.2019.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider two inverse problems for a generalized subdiffusion equation that use the final overdetermination condition. Firstly, we study a problem of reconstruction of a specific space-dependent component in a source term. We prove existence, uniqueness and stability of the solution to this problem. Based on these results, we consider an inverse problem of identification of a space-dependent coefficient of a linear reaction term. We prove the uniqueness and local existence and stability of the solution to this problem.
引用
收藏
页码:236 / 262
页数:27
相关论文
共 34 条
[1]  
[Anonymous], 2001, THESIS
[2]  
[Anonymous], 2011, P INT C IS INIR PET
[3]   IDENTIFYING A SPACE DEPENDENT COEFFICIENT IN A REACTION-DIFFUSION EQUATION [J].
Beretta, Elena ;
Cavaterra, Cecilia .
INVERSE PROBLEMS AND IMAGING, 2011, 5 (02) :285-296
[4]   Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights [J].
Chechkin, A. V. ;
Gonchar, V. Yu. ;
Gorenflo, R. ;
Korabel, N. ;
Sokolov, I. M. .
PHYSICAL REVIEW E, 2008, 78 (02)
[5]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[6]   COMPLETELY POSITIVE MEASURES AND FELLER SEMIGROUPS [J].
CLEMENT, P ;
PRUSS, J .
MATHEMATISCHE ANNALEN, 1990, 287 (01) :73-105
[7]  
Fromberg D., 1981, THESIS
[8]   An inverse problem for a generalized fractional diffusion [J].
Furati, Khaled M. ;
Iyiola, Olaniyi S. ;
Kirane, Mokhtar .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :24-31
[9]  
Gilbarg D., 2001, Classics in Mathematics
[10]  
GRIPENBERG G., 1980, Integral Equat. Operat. Theory, V3, P473