Holographic two-photon activation for synthetic optogenetics

被引:29
作者
Carmi, Ido [1 ]
De Battista, Marco [1 ]
Maddalena, Laura [2 ]
Carroll, Elizabeth C. [2 ]
Kienzler, Michael A. [3 ]
Berlin, Shai [1 ]
机构
[1] Technion Israel Inst Technol, Ruth & Bruce Rappaport Fac Med, Dept Neurosci, Haifa, Israel
[2] Delft Univ Technol, Dept Imaging Phys, Delft, Netherlands
[3] Univ Maine, Dept Chem, Orono, ME 04469 USA
基金
以色列科学基金会;
关键词
GLUTAMATE-RECEPTOR; OPTICAL CONTROL; AZOBENZENE PHOTOSWITCHES; NEURONAL-ACTIVITY; LIGAND-BINDING; NMDA RECEPTORS; ENGRAM CELLS; ION-CHANNEL; EXCITATION; EXPRESSION;
D O I
10.1038/s41596-018-0118-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Optogenetic tools provide users the ability to photocontrol the activity of cells. Commonly, activation is achieved by expression of proteins from photosynthetic organisms, for example, microbial opsins (e.g., ChR2). Alternatively, a sister approach, synthetic optogenetics, enables photocontrol over proteins of mammalian origin by use of photoswitches, visible light (typically), and genetic modification. Thus, synthetic optogenetics facilitates interrogation of native neuronal signaling mechanisms. However, the poor tissue penetration of visible wavelengths impedes the use of the technique in tissue, as two-photon excitation (2PE) is typically required to access the near-infrared window. Here, we describe an alternative technique that uses 2PE-compatible photoswitches (section 1) for photoactivation of genetically modified glutamate receptors (section 2). Furthermore, for fast, multi-region photoactivation, we describe the use of 2P-digital holography (2P-DH) (section 3). We detail how to combine 2P-DH and synthetic optogenetics with electrophysiology, or with red fluorescence Ca2+ recordings, for all-optical neural interrogation. The time required to complete the methods, aside from obtaining the necessary reagents and illumination equipment, is similar to 3 weeks.
引用
收藏
页码:864 / 900
页数:37
相关论文
共 124 条
[1]  
Al-Ali H., 2004, Assay Guidance Manual
[2]   Innovative Optogenetic Strategies for Vision Restoration [J].
Baker, Cameron K. ;
Flannery, John G. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 12
[3]   Two-photon excitation in scattering media by spatiotemporally shaped beams and their application in optogenetic stimulation [J].
Begue, Aurelien ;
Papagiakoumou, Eirini ;
Leshem, Ben ;
Conti, Rossella ;
Enke, Leona ;
Oron, Dan ;
Emiliani, Valentina .
BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12) :2869-2879
[4]  
Berlin S, 2018, NEUROMETHODS, V130, P293, DOI 10.1007/978-1-4939-7228-9_10
[5]   Synapses in the spotlight with synthetic optogenetics [J].
Berlin, Shai ;
Isacoff, Ehud Y. .
EMBO REPORTS, 2017, 18 (05) :677-692
[6]   A family of photoswitchable NMDA receptors [J].
Berlin, Shai ;
Szobota, Stephanie ;
Reiner, Andreas ;
Carroll, Elizabeth C. ;
Kienzler, Michael A. ;
Guyon, Alice ;
Xiao, Tong ;
Tauner, Dirk ;
Isacoff, Ehud Y. .
ELIFE, 2016, 5
[7]  
Berlin S, 2015, NAT METHODS, V12, P852, DOI [10.1038/NMETH.3480, 10.1038/nmeth.3480]
[8]  
BESNARD F, 1991, J BIOL CHEM, V266, P18877
[9]   Nonadiabatic Hybrid Quantum and Molecular Mechanic Simulations of Azobenzene Photoswitching in Bulk Liquid Environment [J].
Boeckmann, Marcus ;
Doltsinis, Nikos L. ;
Marx, Dominik .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (02) :745-754
[10]   Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death [J].
Borowiak, Malgorzata ;
Nahaboo, Wallis ;
Reynders, Martin ;
Nekolla, Katharina ;
Jalinot, Pierre ;
Hasserodt, Jens ;
Rehberg, Markus ;
Delattre, Marie ;
Zahler, Stefan ;
Vollmar, Angelika ;
Trauner, Dirk ;
Thorn-Seshold, Oliver .
CELL, 2015, 162 (02) :403-411