On the upper and lower quantization coefficient for probability measures on multiscale Moran sets

被引:9
作者
Zhu, Sanguo [1 ]
机构
[1] Jiangsu Teachers Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
DIMENSION; FRACTALS; DISTRIBUTIONS;
D O I
10.1016/j.chaos.2012.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite set of patterns, we consider the Moran sets determined by using each of these patterns with a prescribed frequency. For certain infinite product measures mu on such Moran sets, we determine the exact values of the quantization dimensions D-r(mu). We give various sufficient conditions for the D-r(mu)-dimensional upper quantization coefficient and the lower one to be positive and finite. We also construct an example to illustrate our main result. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1437 / 1443
页数:7
相关论文
共 17 条
[1]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[2]  
Graf S., 2000, LECT NOTES MATH, V1730
[3]  
Graf S., 2001, REAL ANAL EXCH, V26, P795
[4]   Quantization [J].
Gray, RM ;
Neuhoff, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) :2325-2383
[5]   Multiscale self-affine Sierpinski carpets [J].
Gui, Yongxin ;
Li, Wenxia .
NONLINEARITY, 2010, 23 (03) :495-512
[6]  
Hua S, 1996, PROG NAT SCI, V6, P148
[7]   On the structures and dimensions of Moran sets [J].
Hua, S ;
Rao, H ;
Wen, ZY ;
Wu, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (08) :836-852
[8]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[9]   Optimal quantization for dyadic homogeneous Cantor distributions [J].
Kreitmeier, Wolfgang .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (09) :1307-1327
[10]   Quantization dimension for conformal iterated function systems [J].
Lindsay, LJ ;
Mauldin, RD .
NONLINEARITY, 2002, 15 (01) :189-199