THE SPECTRAL COLLOCATION METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS

被引:7
作者
Huang, Can [1 ]
Zhang, Zhimin [2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2013年 / 18卷 / 03期
基金
美国国家科学基金会;
关键词
Spectral collocation method; strong convergence; Shoji-Ozaki method; Lamperti transform; RUNGE-KUTTA METHODS; ORDER; APPROXIMATIONS; JUMPS;
D O I
10.3934/dcdsb.2013.18.667
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the Chebyshev spectral collocation method to solve a certain type of stochastic differential equations (SDEs). We also use this method to estimate parameters of stochastic differential equations from discrete observations by maximum likelihood technique and Kessler technique. Our numerical tests shows that the spectral method gives better results than the Euler's method and the Shoji-Ozaki method.
引用
收藏
页码:667 / 679
页数:13
相关论文
共 27 条
[1]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[2]  
[Anonymous], 1992, APPL MATH NEW YORK
[3]  
[Anonymous], 2000, SOC IND APPL MATH
[4]  
[Anonymous], 1988, SPECTRAL METHODS FLU
[5]   On solving stochastic initial-value differential equations [J].
Babuska, I ;
Liu, KM .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (05) :715-745
[6]  
Bruti-Liberati N., 2005, 157 U TECHN
[7]   Strong approximations of stochastic differential equations with jumps [J].
Bruti-Liberati, Nicola ;
Platen, Eckhard .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) :982-1001
[8]   Numerical methods for strong solutions of stochastic differential equations: an overview [J].
Burrage, K ;
Burrage, PM ;
Tian, T .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2041) :373-402
[9]   High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations [J].
Burrage, K ;
Burrage, PM .
APPLIED NUMERICAL MATHEMATICS, 1996, 22 (1-3) :81-101
[10]   Order conditions of stochastic Runge-Kutta methods by B-series [J].
Burrage, K ;
Burrage, PM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1626-1646