A new class of multi-bandgap high-efficiency photovoltaics enabled by broadband diffractive optics

被引:36
作者
Wang, Peng [1 ]
Dominguez-Caballero, Jose A. [2 ]
Friedman, Daniel J. [3 ]
Menon, Rajesh [1 ]
机构
[1] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
来源
PROGRESS IN PHOTOVOLTAICS | 2015年 / 23卷 / 09期
关键词
multi-bandgap photovoltaics; solar concentrator; spectrum-splitting; diffractive optics; microstructures; SOLAR-CELLS;
D O I
10.1002/pip.2516
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A semiconductor absorber with a single bandgap is unable to convert broadband sunlight into electricity efficiently. Photons with energy lower than the bandgap are not absorbed, whereas those with energy far higher than the bandgap lose energy via thermalization. In this Article, we demonstrate an approach to mitigate these losses via a thin, efficient broadband diffractive micro-structured optic that not only spectrally separates incident light but also concentrates it onto multiple laterally separated single-junction semiconductor absorbers. A fully integrated optoelectronic device model was applied in conjunction with a nonlinear optimization algorithm to design the optic. An experimental demonstration is presented for a dual-bandgap design using GaInP and GaAs solar cells, where a 20% increase in the total electric power is measured compared with the same cells without the diffractive optic. Finally, we demonstrate that this framework of broadband diffractive optics allows us to independently design for the number of spectral bands and geometric concentration, thereby enabling a new class of multi-bandgap photovoltaic devices with ultra-high energy conversion efficiencies. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1073 / 1079
页数:7
相关论文
共 22 条
[1]   Quantum dot solar cells [J].
Aroutiounian, V ;
Petrosyan, S ;
Khachatryan, A ;
Touryan, K .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2268-2271
[2]   Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Erni, Lukas ;
Ding, Laura ;
Bugnon, Gregory ;
Billet, Adrian ;
Boccard, Mathieu ;
Barraud, Loris ;
De Wolf, Stefaan ;
Haug, Franz-Josef ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2011, 11 (02) :661-665
[3]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[4]   High-efficiency multijunction solar cells [J].
Dimroth, Frank ;
Kurtz, Sarah .
MRS BULLETIN, 2007, 32 (03) :230-235
[5]   40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions [J].
Geisz, J. F. ;
Friedman, D. J. ;
Ward, J. S. ;
Duda, A. ;
Olavarria, W. J. ;
Moriarty, T. E. ;
Kiehl, J. T. ;
Romero, M. J. ;
Norman, A. G. ;
Jones, K. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[6]   Solar cell efficiency tables (version 39) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :12-20
[7]   Recent progress in nanoimprint technology and its applications [J].
Guo, LJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (11) :R123-R141
[8]   Ultrathin and lightweight organic solar cells with high flexibility [J].
Kaltenbrunner, Martin ;
White, Matthew S. ;
Glowacki, Eric D. ;
Sekitani, Tsuyoshi ;
Someya, Takao ;
Sariciftci, Niyazi Serdar ;
Bauer, Siegfried .
NATURE COMMUNICATIONS, 2012, 3
[9]   Increased Photovoltaic Power Output via Diffractive Spectrum Separation [J].
Kim, Ganghun ;
Dominguez-Caballero, Jose A. ;
Lee, Howard ;
Friedman, Daniel J. ;
Menon, Rajesh .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[10]   Design and analysis of multi-wavelength diffractive optics [J].
Kim, Ganghun ;
Dominguez-Caballero, Jose A. ;
Menon, Rajesh .
OPTICS EXPRESS, 2012, 20 (03) :2814-2823