Stochastic affine quadratic regulator with applications to tracking control of quantum systems

被引:15
作者
Zhang, Weihai [1 ]
Chen, Bor-Sen [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Informat & Elect Engn, Qingdao 266510, Peoples R China
[2] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
基金
中国国家自然科学基金;
关键词
Quantum systems; Affine quadratic regulator; Stochastic systems; Tensor formal power method;
D O I
10.1016/j.automatica.2008.03.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the regulator theory of stochastic affine systems. Applying a tensor formal power series method, stochastic bilinear quadratic regulator is solved numerically. An example about tracking control of quantum systems is given to show the usefulness of the developed theory. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2869 / 2875
页数:7
相关论文
共 20 条
  • [1] AGANOVIC Z, 1995, LECT NOTES CONTROL I, V206
  • [2] BANKS SP, 1986, MATH THEORIES NONLIN
  • [3] BENSOUSSAN A, 1983, LECT NOTES MATH, V972, P1
  • [4] PASSIVITY, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS
    BYRNES, CI
    ISIDORI, A
    WILLEMS, JC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) : 1228 - 1240
  • [5] CHEN BS, 2006, OPTIMAL TRACKING CON
  • [6] Optimal control of two-level quantum systems
    D'Alessandro, D
    Dahleh, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (06) : 866 - 876
  • [7] JACOBSON DH, 1980, LECT NOTE CONTROL IN, V27
  • [8] Kalman RE., 1960, BOL SOC MAT MEX, V5, P102
  • [9] Khasminskii RZ., 1980, STOCHASTIC STABILITY
  • [10] KUSHNER HJ, 1972, LECT NOTES MATH, V294, P97