Ultraviolet Disinfection of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes in Water and Wastewater

被引:414
|
作者
McKinney, Chad W. [1 ]
Pruden, Amy [1 ]
机构
[1] Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
COMPLETE GENOME SEQUENCE; PSEUDOMONAS-AERUGINOSA; STAPHYLOCOCCUS-AUREUS; MOLECULAR SIGNATURES; ACTIVATED-SLUDGE; MULTIPLEX PCR; UNITED-STATES; DNA-DAMAGE; IDENTIFICATION; EXPRESSION;
D O I
10.1021/es303652q
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (similar to 1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm(2) for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm(2) for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r < -0.9; p < 0.0001). ARBs surviving UV treatment were negatively correlated with total genome size (Pearson r < -0.9; p < 0.0001) and adjacent cytosines (Pearson r < -0.88; p < 0.0001) but positively correlated with adjacent thymines (Pearson r > 0.85; p < 0.0001). This suggests that formation of thymine dimers is not the sole mechanism of ARB inactivation. Overall, the results indicate that UV is limited in its potential to damage ARGs and other disinfection technologies should be explored.
引用
收藏
页码:13393 / 13400
页数:8
相关论文
共 50 条
  • [1] Traditional and Emerging Water Disinfection Technologies Challenging the Control of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes
    Cai, Yiwei
    Sun, Tong
    Li, Guiying
    An, Taicheng
    ACS ES&T ENGINEERING, 2021, 1 (07): : 1046 - 1064
  • [2] Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems
    Le, Thai-Hoang
    Ng, Charmaine
    Ngoc Han Tran
    Chen, Hongjie
    Gin, Karina Yew-Hoong
    WATER RESEARCH, 2018, 145 : 498 - 508
  • [3] Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes
    Zhang, Songhe
    Han, Bing
    Gu, Ju
    Wang, Chao
    Wang, Peifang
    Ma, Yanyan
    Cao, Jiashun
    He, Zhenli
    CHEMOSPHERE, 2015, 135 : 138 - 145
  • [4] Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water
    Bergeron, Scott
    Boopathy, Raj
    Nathaniel, Rajkumar
    Corbin, Angie
    LaFleur, Gary
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2015, 102 : 370 - 374
  • [5] Spread of Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in a Swine Wastewater Treatment Plant
    Dias, Camila de Paula
    Pereira, Andressa Rezende
    Paranhos, Aline Gomes de Oliveira
    Rodrigues, Marcus Vinicius Duarte
    de Lima, Wanderson Geraldo
    de Aquino, Sergio Francisco
    Silva, Silvana de Queiroz
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH, 2024, 18 (01)
  • [6] Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent
    Ren, Shaojie
    Boo, Chanhee
    Guo, Ning
    Wang, Shuguang
    Elimelech, Menachem
    Wang, Yunkun
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (15) : 8666 - 8673
  • [7] Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments
    Savin, Mykhailo
    Alexander, Johannes
    Bierbaum, Gabriele
    Hammerl, Jens Andre
    Hembach, Norman
    Schwartz, Thomas
    Schmithausen, Ricarda Maria
    Sib, Esther
    Voigt, Alexander
    Kreyenschmidt, Judith
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives
    Mosaka, Thabang B. M.
    Unuofin, John O.
    Daramola, Michael O.
    Tizaoui, Chedly
    Iwarere, Samuel A.
    FRONTIERS IN MICROBIOLOGY, 2023, 13
  • [9] Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems
    Nnadozie, C. F.
    Kumari, S.
    Bux, F.
    REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2017, 16 (03) : 491 - 515
  • [10] Presence, dissemination and removal of antibiotic resistant bacteria and antibiotic resistance genes in urban drinking water system: A review
    Tan, Qiaowen
    Li, Weiying
    Zhang, Junpeng
    Zhou, Wei
    Chen, Jiping
    Li, Yue
    Ma, Jie
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2019, 13 (03)