DATA-DRIVEN MODELS FOR FAULT DETECTION USING KERNEL PCA: A WATER DISTRIBUTION SYSTEM CASE STUDY

被引:27
作者
Nowicki, Adam [1 ]
Grochowski, Michal [1 ]
Duzinkiewicz, Kazimierz [1 ]
机构
[1] Gdansk Univ Technol, Fac Elect & Control Engn, PL-80233 Gdansk, Poland
关键词
machine learning; kernel PCA; fault detection; monitoring; water leakage detection; QUANTITATIVE MODEL; PREDICTIVE CONTROL; FEATURE SPACE; DIAGNOSIS; RECOGNITION; MACHINES;
D O I
10.2478/v10006-012-0070-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection. A systematic description of the system's framework is followed by evaluation of its performance. Simulations prove that the presented approach is both flexible and efficient.
引用
收藏
页码:939 / 949
页数:11
相关论文
共 29 条
[1]  
Aizerman M. A., 1964, Automation and Remote Control, V25, P821
[2]  
Alpaydin E., 2010, Introduction to Machine Learning, V2
[3]  
[Anonymous], 2004, KERNEL METHODS PATTE
[4]  
[Anonymous], 1991, A User's Guide to Principal Components
[5]   Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds [J].
Barshan, Elnaz ;
Ghodsi, Ali ;
Azimifar, Zohreh ;
Jahromi, Mansoor Zolghadri .
PATTERN RECOGNITION, 2011, 44 (07) :1357-1371
[6]   Hierarchical predictive control of integrated wastewater treatment systems [J].
Brdys, M. A. ;
Grochowski, M. ;
Giminski, T. ;
Konarczak, K. ;
Drewa, M. .
CONTROL ENGINEERING PRACTICE, 2008, 16 (06) :751-767
[7]   Support vector machines for speaker and language recognition [J].
Campbell, WM ;
Campbell, JP ;
Reynolds, DA ;
Singer, E ;
Torres-Carrasquillo, PA .
COMPUTER SPEECH AND LANGUAGE, 2006, 20 (2-3) :210-229
[8]  
Duzinkiewicz K, 2008, STUD INFORM CONTROL, V17, P135
[9]   Kernel PCA for novelty detection [J].
Hoffmann, Heiko .
PATTERN RECOGNITION, 2007, 40 (03) :863-874
[10]   Robust face recognition under partial occlusion based on support vector machine with local Gaussian summation kernel [J].
Hotta, Kazuhiro .
IMAGE AND VISION COMPUTING, 2008, 26 (11) :1490-1498