ROBUST PRECONDITIONERS FOR A NEW STABILIZED DISCRETIZATION OF THE POROELASTIC EQUATIONS

被引:15
作者
Adler, J. H. [1 ]
Gaspar, F. J. [2 ]
Hu, X. [1 ]
Ohm, P. [1 ]
Rodrigo, C. [2 ]
Zikatanov, L. T. [3 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA 02155 USA
[2] Univ Zaragoza, Dept Matemat Aplicada, IUMA, Zaragoza 50009, Spain
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
poroelasticity; stable finite elements; block preconditioners; multigrid; FINITE-ELEMENT APPROXIMATIONS; MULTIFRONTAL METHOD; ITERATIVE METHODS; COUPLING FLOW; CONSOLIDATION; H(DIV); CONVERGENCE; ACCURACY;
D O I
10.1137/19M1261250
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present block preconditioners for a stabilized discretization of the poroelastic equations developed in [C. Rodrigo, X. Hu, P. Ohm, J. Adler, F. Gaspar, and L. Zikatanov, Comput. Methods Appl. Mech. Engrg., 341 (2018), pp. 467-484]. The discretization is proved to be well-posed with respect to the physical and discretization parameters and thus provides a framework to develop preconditioners that are robust with respect to such parameters as well. We construct both norm-equivalent (diagonal) and field-of-value-equivalent (triangular) preconditioners for both the stabilized discretization and a perturbation of the stabilized discretization, which leads to a smaller overall problem after static condensation. Numerical tests for both two- and three-dimensional problems confirm the robustness of the block preconditioners with respect to the physical and discretization parameters.
引用
收藏
页码:B761 / B791
页数:31
相关论文
共 52 条
[1]   Mandel's problem revisited [J].
Abousleiman, Y ;
Cheng, AHD ;
Cui, L ;
Detournay, E ;
Roegiers, JC .
GEOTECHNIQUE, 1996, 46 (02) :187-195
[2]  
Adler James H., 2018, Domain Decomposition Methods in Science and Engineering XXIV. Lecture Notes in Computational Science and Engineering (LNCSE 125), P3, DOI 10.1007/978-3-319-93873-8_1
[3]   Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics [J].
Almani, T. ;
Kumar, K. ;
Dogru, A. ;
Singh, G. ;
Wheeler, M. F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 :180-207
[4]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[5]   Space-time finite element approximation of the Biot poroelasticity system with iterative coupling [J].
Bause, M. ;
Radu, F. A. ;
Koecher, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 :745-768
[6]  
Ben-Hatira F., 2012, J. Biomedical Science and Engineering, V5, P146, DOI DOI 10.4236/jbise.2012.53019
[7]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[8]  
Boffi D., 2013, Springer Series in Computational Mathematics, VVol. 44
[9]   A partially parallel-in-time fixed-stress splitting method for Biot's consolidation model [J].
Borregales, Manuel ;
Kumar, Kundan ;
Radu, Florin Adrian ;
Rodrigo, Carmen ;
Jose Gaspar, Francisco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (06) :1466-1478
[10]   Robust fixed stress splitting for Biot's equations in heterogeneous media [J].
Both, Jakub Wiktor ;
Borregales, Manuel ;
Nordbotten, Jan Martin ;
Kumar, Kundan ;
Radu, Florin Adrian .
APPLIED MATHEMATICS LETTERS, 2017, 68 :101-108