Rosenblatt Perceptrons for handwritten digit recognition

被引:0
|
作者
Ernst, K [1 ]
Tatyana, B [1 ]
Lora, K [1 ]
Vladimir, L [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Instrumentos, Mexico City 04510, DF, Mexico
关键词
perceptron; neural network; character recognition; handwritten digit recognition; image classifier; MNIST database; training time; recognition rate;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Rosenblatt perceptron was used for handwritten digit recognition. For testing its performance MNIST database was used. 60,000 samples of handwritten digits were used for perceptron training, and 10, 000 samples - for testing. The recognition rate of 99.2% was obtained, The critical parameter of Rosenblatt perceptrons is the number of neurons N in the associative neuron layer, In this work we changed the parameter N from 1,000 to 512,000. We investigated the influence of this parameter on the performance of Rosenblatt perceptron. Increasing of N from 1,000 to 512,000 involves decreasing of test errors from 5 to 8 times. It was shown that large scale Rosenblatt perceptron is comparable with the best classifiers checked on MNIST database (98.9% - 99.3%).
引用
收藏
页码:1516 / 1520
页数:5
相关论文
共 50 条
  • [21] A Convolutional Neural Network for Handwritten Digit Recognition
    Guevara Neri, Maria Cristina
    Vergara Villegas, Osslan Osiris
    Cruz Sanchez, Vianey Guadalupe
    Nandayapa, Manuel
    Sossa Azuela, Juan Humberto
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2020, 11 (01): : 97 - 105
  • [22] Metaheuristics for Feature Selection in Handwritten Digit Recognition
    Seijas, Leticia M.
    Carneiro, Raphael F.
    Santana, Clodomir J., Jr.
    Soares, Larissa S. L.
    Bezerra, Sabrina G. T. A.
    Bastos-Filho, Carmelo J. A.
    2015 LATIN AMERICA CONGRESS ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2015,
  • [23] FPGA Implementation of CNN for Handwritten Digit Recognition
    Xiao, Rui
    Shi, Junsheng
    Zhang, Chao
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1128 - 1133
  • [24] Handwritten digit recognition: A neural network demo
    van der Zwaag, BJ
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 762 - 771
  • [25] Hypergeometric Laguerre Moment for Handwritten Digit Recognition
    Benzoubeir, S.
    Hmamed, A.
    Qjidaa, H.
    2009 INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS 2009), 2009, : 448 - 452
  • [26] Handwritten digit recognition with fuzzy neural networks
    Zhao, Hongyu
    Ye, Wenxia
    Jin, Fan
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 1997, 32 (03): : 247 - 252
  • [27] Handwritten digit recognition system based on DSP
    Miao, Hongqing
    Yin, Lixin
    Huang, Suzhen
    Jisuanji Gongcheng/Computer Engineering, 2005, 31 (04): : 178 - 180
  • [28] Hierarchical Bayesian network for handwritten digit recognition
    Sung, J
    Bang, SY
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2003, 2626 : 396 - 406
  • [29] Automatic feature generation for handwritten digit recognition
    Gader, PD
    Khabou, MA
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (12) : 1256 - 1261
  • [30] Eliciting domain knowledge in handwritten digit recognition
    Nguyen, TT
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 762 - 767