Measurements of dose-averaged linear energy transfer distributions in water using CR-39 plastic nuclear track detector for therapeutic carbon ion beams

被引:12
作者
Kohno, R
Yasuda, N
Takeshi, H
Kase, Y
Ochiai, K
Komori, M
Matsufuji, N
Kanai, T
机构
[1] Natl Inst Radiol Sci, Dept Med Phys, Chiba 2638555, Japan
[2] Natl Inst Radiol Sci, Res Ctr Radiat Safety, Chiba 2638555, Japan
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
[4] Tokyo Inst Technol, Interdisciplinary Grad Sch Sci & Engn, Yokohama, Kanagawa 2268502, Japan
[5] Toho Univ, Dept Phys, Chiba 2740072, Japan
[6] Natl Inst Radiol Sci, Dept Accelerator Phys & Engn, Chiba 2638555, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2005年 / 44卷 / 12期
关键词
CR-39 plastic nuclear track detector; dose-averaged LET; carbon ion radiotherapy; Bragg curve; depth-dose distribution; spread-out Bragg peak (SOBP);
D O I
10.1143/JJAP.44.8722
中图分类号
O59 [应用物理学];
学科分类号
摘要
A CR-39 plastic nuclear track detector was used as a linear energy transfer (LET) detector for carbon ion radiotherapy. We compared dose-averaged LET distributions in water obtained using the CR-39 detector for a monoenergetic beam and spreadout Bragg peak beam by calculations using the one-dimensional heavy-ion transport code used in the current heavy-ion treatment planning. We confirmed that the CR-39 detector could measure the high LET particles that are dominant contributors to dose-averaged LET. On the other hand, the CR-39 result was overestimated in the tail region of the distal edge in depth-dose distributions, due to its detection limit for lower LET particles. However, physical dose in the region is quite small. Namely, the effect of this difference on the biological dose distribution is also small. These results demonstrate that the CR-39 detector is a useful detector for measuring the LET distribution in carbon ion radiotherapy.
引用
收藏
页码:8722 / 8726
页数:5
相关论文
共 16 条
[1]  
BENTON EV, 1986, NUCL TRACKS RAD MEAS, V12, P79
[2]  
BENTON EV, 1968, USNRDLTR6814
[3]  
BLAKELY EA, 1984, ADV RADIAT BIOL, V11, P295
[4]   ESTIMATION OF DOSE-EQUIVALENT IN STS-47 BY A COMBINATION OF TLDS AND CR-39 [J].
DOKE, T ;
HAYASHI, T ;
NAGAOKA, S ;
OGURA, K ;
TAKEUCHI, R .
RADIATION MEASUREMENTS, 1995, 24 (01) :75-82
[5]   The measurement of the fragment emission angles in the reactions of <135 MeV/u 12C and 16O in tissue equivalent targets [J].
Giacomelli, M ;
Skvarc, J ;
Ilic, R ;
Yasuda, N ;
Sihver, L .
RADIATION MEASUREMENTS, 2003, 36 (1-6) :329-334
[6]  
Golovchenko AN, 2002, PHYS REV C, V66, DOI 10.1103/PhysRevC.66.014609
[7]   Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy [J].
Kanai, T ;
Endo, M ;
Minohara, S ;
Miyahara, N ;
Koyama-Ito, H ;
Tomura, H ;
Matsufuji, N ;
Futami, Y ;
Fukumura, A ;
Hiraoka, T ;
Furusawa, Y ;
Ando, K ;
Suzuki, M ;
Soga, F ;
Kawachi, K .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 44 (01) :201-210
[8]   Evaluation of a pencil beam algorithm for therapeutic carbon ion beam in presence of bolus [J].
Kohno, R ;
Kanematsu, N ;
Kanai, T ;
Yusa, K .
MEDICAL PHYSICS, 2004, 31 (08) :2249-2253
[9]   Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy [J].
Matsufuji, N ;
Fukumura, A ;
Komori, M ;
Kanai, T ;
Kohno, T .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (11) :1605-1623
[10]  
Mizota M, 2002, PHYS MED BIOL, V47, P935, DOI 10.1088/0031-9155/47/6/306