Inferring Phenotypic Properties from Single-Cell Characteristics

被引:23
作者
Qiu, Peng [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Bioinformat & Computat Biol, Houston, TX 77030 USA
来源
PLOS ONE | 2012年 / 7卷 / 05期
关键词
FLOW-CYTOMETRY DATA; AUTOMATED IDENTIFICATION; CANCER; EXPRESSION; CLASSIFICATION; LEUKEMIA; MODEL; DREAM;
D O I
10.1371/journal.pone.0037038
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flow cytometry provides multi-dimensional data at the single-cell level. Such data contain information about the cellular heterogeneity of bulk samples, making it possible to correlate single-cell features with phenotypic properties of bulk tissues. Predicting phenotypes from single-cell measurements is a difficult challenge that has not been extensively studied. The 6th Dialogue for Reverse Engineering Assessments and Methods (DREAM6) invited the research community to develop solutions to a computational challenge: classifying acute myeloid leukemia (AML) positive patients and healthy donors using flow cytometry data. DREAM6 provided flow cytometry data for 359 normal and AML samples, and the class labels for half of the samples. Researchers were asked to predict the class labels of the remaining half. This paper describes one solution that was constructed by combining three algorithms: spanning-tree progression analysis of density-normalized events (SPADE), earth mover's distance, and a nearest-neighbor classifier called Relief. This solution was among the topper-forming methods that achieved 100% prediction accuracy.
引用
收藏
页数:9
相关论文
共 33 条
[1]  
[Anonymous], P 9 INT WORKSH MACH
[2]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[3]   Mixture modeling approach to flow cytometry data [J].
Boedigheimer, Michael J. ;
Ferbas, John .
CYTOMETRY PART A, 2008, 73A (05) :421-429
[4]   Statistical mixture modeling for cell subtype identification in flow cytometry [J].
Chan, Cliburn ;
Feng, Feng ;
Ottinger, Janet ;
Foster, David ;
West, Mike ;
Kepler, Thomas B. .
CYTOMETRY PART A, 2008, 73A (08) :693-701
[5]   Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry [J].
Chattopadhyay, Pratip K. ;
Price, David A. ;
Harper, Theresa F. ;
Betts, Michael R. ;
Yu, Joanne ;
Gostick, Emma ;
Perfetto, Stephen P. ;
Goepfert, Paul ;
Koup, Richard A. ;
De Rosa, Stephen C. ;
Bruchez, Marcel P. ;
Roederer, Mario .
NATURE MEDICINE, 2006, 12 (08) :972-977
[6]  
Finak Greg, 2009, Advances in Bioinformatics, V2009, P247646, DOI 10.1155/2009/247646
[7]   GRAPH DRAWING BY FORCE-DIRECTED PLACEMENT [J].
FRUCHTERMAN, TMJ ;
REINGOLD, EM .
SOFTWARE-PRACTICE & EXPERIENCE, 1991, 21 (11) :1129-1164
[8]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[9]  
HAHNE F, 2009, BMC BIOINFORMATICS, V10
[10]   Interpreting flow cytometry data: a guide for the perplexed [J].
Herzenberg, Leonore A. ;
Tung, James ;
Moore, Wayne A. ;
Herzenberg, Leonard A. ;
Parks, David R. .
NATURE IMMUNOLOGY, 2006, 7 (07) :681-685