Linear Shafarevich conjecture

被引:20
作者
Eyssidieux, P. [1 ]
Katzarkov, L. [2 ,3 ]
Pantev, T. [4 ]
Ramachandran, M. [5 ]
机构
[1] Univ Grenoble 1, Inst Univ France, Inst Fourier, Grenoble, France
[2] Univ Vienna, Vienna, Austria
[3] Univ Miami, Miami, FL USA
[4] Univ Penn, Philadelphia, PA 19104 USA
[5] SUNY Buffalo, Buffalo, NY 14260 USA
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
UNIVERSAL COVERINGS; VECTOR-BUNDLES; REPRESENTATIONS; CONVEXITY; SPACES; MODULI; MAPS;
D O I
10.4007/annals.2012.176.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we settle affirmatively Shafarevich's uniformization conjecture for varieties with linear fundamental groups. We prove the strongest to date uniformization result - the universal covering space of a complex projective manifold with a linear fundamental group is holomorphically convex. The proof is based on both known and newly developed techniques in non-abelian Hodge theory.
引用
收藏
页码:1545 / 1581
页数:37
相关论文
共 47 条
[1]  
[Anonymous], 1996, ERGEB MATH GRENZGEB
[2]  
[Anonymous], 1987, K-Theory
[3]  
[Anonymous], OEUVRES
[4]  
[Anonymous], OEUVRES
[5]  
[Anonymous], OEUVRES
[6]  
[Anonymous], 1970, I HAUTES ETUDES SCI
[7]  
ARAPURA D., 2010, CLAY MATH P, V9, P3
[8]   Vanishing theorems of negative vector bundles on projective varieties and the convexity of coverings [J].
Bogomolov, F ;
De Oliveira, B .
JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (02) :207-222
[9]   Complex projective surfaces and infinite groups [J].
Bogomolov, F ;
Katzarkov, L .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (02) :243-272
[10]  
Bogomolov F, 2005, ASIAN J MATH, V9, P295