A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures

被引:60
作者
Han, Liuliu [1 ,2 ]
Xu, Xiandong [3 ]
Li, Zhiming [1 ,2 ,4 ]
Liu, Bin [1 ]
Liu, C. T. [5 ]
Liu, Yong [1 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, Dusseldorf, Germany
[3] Hunan Univ, Coll Mat Sci & Engn, Ctr Electron Microscopy, Changsha, Peoples R China
[4] Cent South Univ, Sch Mat Sci & Engn, Changsha, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoscale precipitation; high-temperature tensile properties; eutectic high-entropy alloys; equiaxed structure; TENSILE PROPERTIES; MICROSTRUCTURE EVOLUTION; PRECIPITATION BEHAVIOR; THERMAL-STABILITY; DEFORMATION; STRENGTH; CAST; DESIGN; PHASES;
D O I
10.1080/21663831.2020.1772395
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Impact statement High-temperature tensile properties of a eutectic high-entropy alloy (EHEAs) are significantly improved compared to those of casted EHEAs, through modification of lamellar structure to an equiaxed one by powder metallurgy. A Co25.1Cr18.8Fe23.3Ni22.6Ta8.5Al1.7 (at. %) eutectic high-entropy alloy (EHEA) consisting of face-centered-cubic (FCC) and C14 Laves phases was produced by powder metallurgy. The EHEA shows an equiaxed morphology that is different from eutectic lamellar structure. Nanometer L1(2) phase (4-5 nm) further precipitates in FCC matrix. The microstructure is highly stable upon annealing at 1000 degrees C for 100 h, which leads to attractive high-temperature strength. The fracture behaviour is observed to be modified by the equiaxed Laves phase, which contains microcracks induced by multiple dislocation slips. The diversified cracking modes help to relieve stress concentration and therefore enhance ductility at high temperatures.
引用
收藏
页码:373 / 382
页数:10
相关论文
共 44 条
[1]   Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys [J].
Ai, Cheng ;
He, Feng ;
Guo, Min ;
Zhou, Jian ;
Wang, Zhijun ;
Yuan, Zhanwei ;
Guo, Yajie ;
Liu, Yinliang ;
Liu, Lin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 735 :2653-2662
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277
[4]   Tuning element distribution, structure and properties by composition in high-entropy alloys [J].
Ding, Qingqing ;
Zhang, Yin ;
Chen, Xiao ;
Fu, Xiaoqian ;
Chen, Dengke ;
Chen, Sijing ;
Gu, Lin ;
Wei, Fei ;
Bei, Hongbin ;
Gao, Yanfei ;
Wen, Minru ;
Li, Jixue ;
Zhang, Ze ;
Zhu, Ting ;
Ritchie, Robert O. ;
Yu, Qian .
NATURE, 2019, 574 (7777) :223-+
[5]   Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys [J].
Ding ZhaoYi ;
He QuanFeng ;
Yang Yong .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2018, 61 (02) :159-167
[6]   Effect of hafnium addition on the microstructure and tensile properties of aluminum added high-Cr ODS steels [J].
Dong, Hongqing ;
Yu, Liming ;
Liu, Yongchang ;
Liu, Chenxi ;
Li, Huijun ;
Wu, Jiefeng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 702 :538-545
[7]   Influence of Al content on thermal stability of nanocrystalline Al x CoCrFeNi high entropy alloys at low and intermediate temperatures [J].
Garlapati, Mohan Muralikrishna ;
Vaidya, Mayur ;
Karati, Anirudha ;
Mishra, Soumyaranjan ;
Bhattacharya, Rahul ;
Murty, B. S. .
ADVANCED POWDER TECHNOLOGY, 2020, 31 (05) :1985-1993
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]  
Griffits A.A., 1995, MASINOVEDENIE, P9, DOI [10.1098/RSTA.1921.0006, DOI 10.1098/RSTA.1921.0006]
[10]   Creep response and deformation processes in nanocluster-strengthened ferritic steels [J].
Hayashi, T. ;
Sarosi, P. M. ;
Schneibel, J. H. ;
Mills, M. J. .
ACTA MATERIALIA, 2008, 56 (07) :1407-1416