Numerical simulation of the transport properties of indium antimonide

被引:7
作者
Orlov, V. G. [1 ,2 ]
Sergeev, G. S. [1 ]
机构
[1] Natl Res Ctr Kurchatov Inst, Moscow 123182, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
ELASTIC ELECTRON-SCATTERING; MONTE-CARLO-SIMULATION; BOLTZMANN-EQUATION; BAND-STRUCTURE; SEMICONDUCTOR-DEVICES; GAP SEMICONDUCTORS; INSB; MOBILITY; TEMPERATURE; FIGURE;
D O I
10.1134/S1063783413110188
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A systematic investigation of the behavior of the transport coefficients of n-InSb over wide ranges of temperatures and concentrations of dopant atoms has been performed using the numerical solution of the Boltzmann transport equation. The thermoelectric characteristics of indium antimonide have been analyzed. The influence of different mechanisms of scattering of charge carriers on the transport coefficients and efficiency of thermoelectric energy conversion has been considered. The nature of the specific features of the temperature and concentration dependence of the transport and thermoelectric properties of n-InSb has been revealed.
引用
收藏
页码:2215 / 2222
页数:8
相关论文
共 50 条
  • [31] Observation of Surface Plasmon Resonance in Monochromatic Terahertz Radiation on Indium Antimonide
    Khasanov, I. Sh.
    Gerasimov, V. V.
    Kameshkov, O. E.
    Nikitin, A. K.
    Kassandrov, V. V.
    JOURNAL OF SURFACE INVESTIGATION, 2023, 17 (05): : 1052 - 1059
  • [32] Spectroscopy of Spin-Orbit Quantum Bits in Indium Antimonide Nanowires
    Nadj-Perge, S.
    Pribiag, V. S.
    van den Berg, J. W. G.
    Zuo, K.
    Plissard, S. R.
    Bakkers, E. P. A. M.
    Frolov, S. M.
    Kouwenhoven, L. P.
    PHYSICAL REVIEW LETTERS, 2012, 108 (16)
  • [33] Single Crystal Charge Density Studies of Thermoelectric Material Indium Antimonide
    Robert, Muthaian Charles
    Subha, Bandarinathan
    Saravanan, Ramachandran
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (8-9): : 562 - 568
  • [34] Fabrication, investigation, and application of doped indium antimonide microcrystals in radiationresistant sensors
    F. Terra
    G. Fakhim
    I. A. Bol'shakova
    C. Leroy
    E. Yu. Makido
    A. Matkovskii
    T. Moskovets
    Russian Physics Journal, 2003, 46 (6) : 601 - 608
  • [35] Highly reversible lithiation/delithiation in indium antimonide with hybrid buffering matrix
    Hieu, Luong Trung
    So, Seongjoon
    Kim, Il Tae
    Hur, Jaehyun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16145 - 16154
  • [36] The Response of Phonon Frequencies, Sound Velocity, Electronic, Optical, and Mechanical Properties of Indium (Phosphide, Arsenide, and Antimonide) to Hydrostatic Pressure
    Degheidy, A. R.
    Abuali, A. M.
    Elkenany, Elkenany B.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (06)
  • [37] The variation of electrical transport properties with thickness for ultrathin indium oxide films
    Jiang, Qing-Kun
    Yang, Yang
    Zhang, Yu-Jie
    Liu, Xin-Dian
    Li, Zhi-Qing
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (09):
  • [38] Positron annihilation measurements in high energy alpha irradiated undoped indium antimonide
    Pan, Sandip
    Mandal, Arunava
    Mukherjee, Subrata
    Saha, Achintya Kumar
    Roychowdhury, Anirban
    Das, Dipankar
    Sengupta, Asmita
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (30):
  • [39] Temperature and magnetic-field dependences of the thermoelectric power of electronic indium antimonide
    M. M. Gadjialiev
    Z. Sh. Pirmagomedov
    T. N. Efendieva
    Semiconductors, 2014, 48 : 1139 - 1140
  • [40] Carrier Dynamics in Highly Quantum-Confined, Colloidal Indium Antimonide Nanocrystals
    Chang, Angela Y.
    Liu, Wenyong
    Talapin, Dmitri V.
    Schaller, Richard D.
    ACS NANO, 2014, 8 (08) : 8513 - 8519